scholarly journals Petroleum generation and migration in the Mesopotamian Basin and Zagros Fold Belt of Iraq: results from a basin-modeling study

GeoArabia ◽  
2004 ◽  
Vol 9 (4) ◽  
pp. 41-72 ◽  
Author(s):  
Janet K. Pitman ◽  
Douglas Steinshouer ◽  
Michael D. Lewan

ABSTRACT A regional 3-D total petroleum-system model was developed to evaluate petroleum generation and migration histories in the Mesopotamian Basin and Zagros fold belt in Iraq. The modeling was undertaken in conjunction with Middle East petroleum assessment studies conducted by the USGS. Regional structure maps, isopach and facies maps, and thermal maturity data were used as input to the model. The oil-generation potential of Jurassic source-rocks, the principal known source of the petroleum in Jurassic, Cretaceous, and Tertiary reservoirs in these regions, was modeled using hydrous pyrolysis (Type II-S) kerogen kinetics. Results showed that oil generation in source rocks commenced in the Late Cretaceous in intrashelf basins, peak expulsion took place in the late Miocene and Pliocene when these depocenters had expanded along the Zagros foredeep trend, and generation ended in the Holocene when deposition in the foredeep ceased. The model indicates that, at present, the majority of Jurassic source rocks in Iraq have reached or exceeded peak oil generation and most rocks have completed oil generation and expulsion. Flow-path simulations demonstrate that virtually all oil and gas fields in the Mesopotamian Basin and Zagros fold belt overlie mature Jurassic source rocks (vertical migration dominated) and are situated on, or close to, modeled migration pathways. Fields closest to modeled pathways associated with source rocks in local intrashelf basins were charged earliest from Late Cretaceous through the middle Miocene, and other fields filled later when compression-related traps were being formed. Model results confirm petroleum migration along major, northwest-trending folds and faults, and oil migration loss at the surface.

Author(s):  
Flemming G. Christiansen ◽  
Jørgen A. Bojesen-Koefoed ◽  
Gregers Dam ◽  
Troels Laier ◽  
Sara Salehi

The Nuussuaq Basin in West Greenland has an obvious exploration potential. Most of the critical elements are well documented, including structures that could form traps, reservoir rocks, seals and oil and gas seepage that documents petroleum generation. And yet, we still lack a full understanding of the petroleum systems, especially the distribution of mature source rocks in the subsurface and the vertical and lateral migration of petroleum into traps. A recently proposed anticlinal structural model could be very interesting for exploration if evidence of source rocks and migration pathways can be found. In this paper, we review all existing, mostly unpublished, data on gas observations from Nuussuaq. Furthermore, we present new oil and gas seepage data from the vicinity of the anticline. Occurrence of gas within a few kilometres on both sides of the mapped anticline has a strong thermogenic fingerprint, suggesting an origin from oil-prone source rocks with a relatively low thermal maturity. Petroleum was extracted from an oil-stained hyaloclastite sample collected in the Aaffarsuaq valley in 2019, close to the anticline. Biomarker analyses revealed the oil to be a variety of the previously characterised “Niaqornaarsuk type,” reported to be formed from Campanian-age source rocks. Our new analysis places the “Niaqornaarsuk type” 10 km from previously documented occurrences and further supports the existence of Campanian age deposits developed in source rock facies in the region.


2016 ◽  
Vol 53 (10) ◽  
pp. 1053-1072 ◽  
Author(s):  
Mohammed Hail Hakimi ◽  
Abdulghani F. Ahmed

Late Jurassic – Early Cretaceous shales of the Naifa, Safer, and Madbi formations were studied to evaluate source rock characterization. The results of the source rock were then incorporated into basin modeling to understand the timing of hydrocarbon (HC) generation and expulsion. The Late Jurassic – Early Cretaceous shales have low to high organic matter, with total organic carbon (TOC) values in the range of 0.50%–28.01%, indicating fair to excellent source rock potential. Main oil and gas are anticipated to be generated from the Naifa, Safer, and Lam shale samples with types I and (or) II and types II–III kerogens. In contrast, the Meem samples are dominated by type III kerogen (hydrogen index, HI < 200 mg HC / g TOC), and are thus considered to be gas prone. The Late Jurassic – Early Cretaceous shale samples have temperatures of maximum pyrolysis yield (Tmax) in the range of 337–515 °C, consistent with immature to post-mature stages. The Tmax data also indicate that the Safer and Madbi shale samples have sufficient thermal maturity, i.e., peak–mature oil and gas window. The basin models indicate that the Naifa Formation is early–mature, and the onset oil generation began during the Early Miocene. The models also indicate that the main phase of oil generation in the Safer source rock began during the Late Eocene. In contrast, the Madbi source rock units had passed the peak oil generation window, and the oil was converted to gas during the Late Cretaceous to Late Eocene. The modeled HC expulsion history reveals that most oils are contributed by both Madbi units, with significant amounts of gas originating from the Meem unit.


1994 ◽  
Vol 34 (1) ◽  
pp. 279 ◽  
Author(s):  
Dennis Taylor ◽  
Aleksai E. Kontorovich ◽  
Andrei I. Larichev ◽  
Miryam Glikson

Organic rich shale units ranging up to 350 m in thickness with total organic carbon (TOC) values generally between one and ten per cent are present at several stratigraphic levels in the upper part of the Carpentarian Roper Group. Considerable variation in depositional environment is suggested by large differences in carbon:sulphur ratios and trace metal contents at different stratigraphic levels, but all of the preserved organic matter appears to be algal-sourced and hydrogen-rich. Conventional Rock-Eval pyrolysis indicates that a type I-II kerogen is present throughout.The elemental chemistry of this kerogen, shows a unique chemical evolution pathway on the ternary C:H:ONS diagram which differs from standard pathways followed by younger kerogens, suggesting that the maturation histories of Proterozoic basins may differ significantly from those of younger oil and gas producing basins. Extractable organic matter (EOM) from Roper Group source rocks shows a chemical evolution from polar rich to saturate rich with increasing maturity. Alginite reflectance increases in stepwise fashion through the zone of oil and gas generation, and then increases rapidly at higher levels of maturation. The increase in alginite reflectance with depth or proximity to sill contacts is lognormal.The area explored by Pacific Oil and Gas includes a northern area where the Velkerri Formation is within the zone of peak oil generation and the Kyalla Member is immature, and a southern area, the Beetaloo sub-basin, where the zone of peak oil generation is within the Kyalla Member. Most oil generation within the basin followed significant folding and faulting of the Roper Group.


2017 ◽  
Vol 20 (K4) ◽  
pp. 91-102
Author(s):  
Xuan Van Tran ◽  
Huy Nhu Tran ◽  
Chuc Dinh Nguyen ◽  
Tuan Nguyen ◽  
Ngoc Ba Thai ◽  
...  

Based on the update of exploration data the oil and gas potential within block 05-1 are studied through define the source rocks, Hydrocarbon (HC) generation, expulsion and migration, focusing on source rock Oligocene /Early Miocene and Middle Miocene; Define the accumulation of hydrocarbon in Lower Miocene targets; The results of assessments for source rock, oil sampling analysis is used to determine the relationship between in–situ oil or oil migrated from other places. The workflow of basin modeling is assigned to get output (migration pathways, volume of accumulation), as well as data calibration. Main source rocks include H150, H125 shales and H150 coal with Total organic carbon (TOC)~1 and 47 respectively. These source rocks are medium to good potential. At the present time, most of the source rocks are in oil window, while the deep parts is in gas window. Oil started to be generated in Early Miocene, and started to be expulsed in Late Miocene. Gas started to be generated in Quaternary, about to be expulsed. The oil migrated mainly from the troughs at the West and minorly from the East and South to Dai Hung High. Gas started to migrate from West to East and South West to North East at the Western part. However, at the Eastern part, gas migrated from the opposite direction. The results of sensitive analyses show more oil in max source rock case, therefore, a 3D model development is recommended and identify the differences in generation characteristics between Nam Con Son and Cuu Long basins.


1992 ◽  
Vol 32 (1) ◽  
pp. 313 ◽  
Author(s):  
P. S. Moore ◽  
B. J. Burns ◽  
J. K. Emmett ◽  
D. A. Guthrie

Biomarker geochemistry, maturation modelling and migration pathway analysis have been used in a new, integrated analysis of the Gippsland Basin. The analysis has resulted in the development of a predictive model for hydrocarbon charge and oil versus gas split. The study was carried out in 4 parts: analytical geochemistry, source distribution mapping, maturation modelling and migration pathway analysis.New geochemical biomarker studies confirm a non-marine source for the oils, but place peak oil generation in the upper part of the traditional oil window. Gas in the basin is mainly derived from overmature source rocks. Coals were recognised to contribute significantly to oil generation.The source rock thickness and distribution for the entire basin were mapped using analytical techniques plus wireline log analysis, coupled with seismic structural mapping and facies analysis. Prime oil-prone source rocks were found to be located in the lower coastal plain depositional environment. Extrapolations were necessary for older rocks, using stratigraphic models.Maturation modelling modelling of selected wells and synclines was carried out and an overall basin model constructed. Post-structuring yields of oil and gas were also derived. A key result was the lack of post-structuring overmature gas generation in the oil prone southeastern part of the basin, owing to high palaeo-temperatures associated with earlier rifting.Analysis of present day and palaeo-migration pathways gave an excellent match between predicted oil versus gas ratios and discoveries, both geographically and stratigraphically. The tool is now being used in a predictive mode to highgrade basin prospectivity.


2020 ◽  
Vol 10 (4) ◽  
pp. 95-120
Author(s):  
Rzger Abdulkarim Abdula

Burial history, thermal maturity, and timing of hydrocarbon generation were modeled for five key source-rock horizons at five locations in Northern Iraq. Constructed burial-history locations from east to west in the region are: Taq Taq-1; Qara Chugh-2; Zab-1; Guwair-2; and Shaikhan-2 wells. Generally, the thermal maturity status of the burial history sites based on increasing thermal maturity is Shaikhan-2 < Zab-1 < Guwair-2 < Qara Chugh-2 < Taq Taq-1. In well Qara Chugh-2, oil generation from Type-IIS kerogen in Geli Khana Formation started in the Late Cretaceous. Gas generation occurred at Qara Chugh-2 from Geli Khana Formation in the Late Miocene. The Kurra Chine Formation entered oil generation window at Guwair-2 and Shaikhan-2 at 64 Ma and 46 Ma, respectively. At Zab-1, the Baluti Formation started to generate gas at 120 Ma. The Butmah /Sarki reached peak oil generation at 45 Ma at Taq Taq-1. The main source rock in the area, Sargelu Formation started to generate oil at 47, 51, 33, 28, and 28 Ma at Taq Taq-1, Guwair-2, Shaikhan-2, Qara Chugh-2, and Zab-1, respectively. The results of the models demonstrated that peak petroleum generation from the Jurassic oil- and gas-prone source rocks in the most profound parts of the studied area occurred from Late Cretaceous to Middle Oligocene. At all localities, the Sargelu Formation is still within the oil window apart from Taq Taq-1 and Qara Chugh-2 where it is in the oil cracking and gas generation phase.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8317
Author(s):  
Qiang Cao ◽  
Jiaren Ye ◽  
Yongchao Lu ◽  
Yang Tian ◽  
Jinshui Liu ◽  
...  

Semi-open hydrous pyrolysis experiments on coal-measure source rocks in the Xihu Sag were conducted to investigate the carbon isotope evolution of kerogen, bitumen, generated expelled oil, and gases with increasing thermal maturity. Seven corresponding experiments were conducted at 335 °C, 360 °C, 400 °C, 455 °C, 480 °C, 525 °C, and 575 °C, while other experimental factors, such as the heating time and rate, lithostatic and hydrodynamic pressures, and columnar original samples were kept the same. The results show that the simulated temperatures were positive for the measured vitrinite reflectance (Ro), with a correlation coefficient (R2) of 0.9861. With increasing temperatures, lower maturity, maturity, higher maturity, and post-maturity stages occurred at simulated temperatures (Ts) of 335–360 °C, 360–400 °C, 400–480 °C, and 480–575 °C, respectively. The increasing gas hydrocarbons with increasing temperature reflected the higher gas potential. Moreover, the carbon isotopes of kerogen, bitumen, expelled oil, and gases were associated with increased temperatures; among gases, methane was the most sensitive to maturity. Ignoring the intermediate reaction process, the thermal evolution process can be summarized as kerogen0(original) + bitumen0(original)→kerogenr (residual kerogen) + expelled oil (generated) + bitumenn+r (generated + residual) + C2+(generated + residual) + CH4(generated). Among these, bitumen, expelled oil, and C2-5 acted as reactants and products, whereas kerogen and methane were the reactants and products, respectively. Furthermore, the order of the carbon isotopes during the thermal evolution process was identified as: δ13C1 < 13C2-5 < δ13Cexpelled oil < δ13Cbitumen < δ13Ckerogen. Thus, the reaction and production mechanisms of carbon isotopes can be obtained based on their changing degree and yields in kerogen, bitumen, expelled oil, and gases. Furthermore, combining the analysis of the geochemical characteristics of the Pinghu Formation coal–oil-type gas in actual strata with these pyrolysis experiments, it was identified that this area also had substantial development potential. Therefore, this study provides theoretical support and guidance for the formation mechanism and exploration of oil and gas based on changing carbon isotopes.


2018 ◽  
Vol 170 ◽  
pp. 620-642 ◽  
Author(s):  
Mohammed Hail Hakimi ◽  
Abdulwahab S. Alaug ◽  
Abdulghani F. Ahmed ◽  
Madyan M.A. Yahya ◽  
Mohamed M. El Nady ◽  
...  

2021 ◽  
pp. M57-2021-29
Author(s):  
A.K. Khudoley ◽  
S.V. Frolov ◽  
G.G. Akhmanov ◽  
E.A. Bakay ◽  
S.S. Drachev ◽  
...  

AbstractAnabar-Lena Composite Tectono-Sedimentary Element (AL CTSE) is located in the northern East Siberia extending for c. 700 km along the Laptev Sea coast between the Khatanga Bay and Lena River delta. AL CTSE consists of rocks from Mesoproterozoic to Late Cretaceous in age with total thickness reaching 14 km. It evolved through the following tectonic settings: (1) Meso-Early Neoproterozoic intracratonic basin, (2) Ediacaran - Early Devonian passive margin, (3) Middle Devonian - Early Carboniferous rift, (4) late Early Carboniferous - latest Jurassic passive margin, (5) Permian foreland basin, (6) Triassic to Jurassic continental platform basin and (7) latest Jurassic - earliest Late Cretaceous foreland basin. Proterozoic and lower-middle Paleozoic successions are composed mainly by carbonate rocks while siliciclastic rocks dominate upper Paleozoic and Mesozoic sections. Several petroleum systems are assumed in the AL CTSE. Permian source rocks and Triassic sandstone reservoirs are the most important play elements. Presence of several mature source rock units and abundant oil- and gas-shows (both in wells and in outcrops), including a giant Olenek Bitumen Field, suggest that further exploration in this area may result in economic discoveries.


2001 ◽  
Vol 41 (1) ◽  
pp. 139 ◽  
Author(s):  
G.J. Ambrose ◽  
P.D. Kruse ◽  
P.E. Putnam

The Georgina Basin is an intracratonic basin on the central-northern Australian craton. Its southern portion includes a highly prospective Middle Cambrian petroleum system which remains largely unexplored. A plethora of stratigraphic names plagued previous exploration but the lithostratigraphy has now been rationalised using previously unpublished electric-log correlations and seismic and core data.Neoproterozoic and Lower Palaeozoic sedimentary rocks of the southern portion of the basin cover an area of 100,000 km2 and thicken into two main depocentres, the Toko and Dulcie Synclines. In and between these depocentres, a Middle Cambrian carbonate succession comprising Thorntonia Limestone and Arthur Creek Formation provides a prospective reservoir-source/seal couplet extending over 80,000 km2. The lower Arthur Creek Formation includes world class microbial source rocks recording total organic carbon (TOC) values of up to 16% and hydrocarbon yields up to 50 kg/tonne. This blanket source/seal unconformably overlies sheetlike, platform dolostone of the Thorntonia Limestone which provides the prime target reservoir. Intra- Arthur Creek high-permeability grainstone shoals are important secondary targets.In the Toko Syncline, Middle Cambrian source rocks entered the oil window during the Ordovician, corresponding to major sediment loading at this time. The gas window was reached prior to structuring associated with the Middle Devonian-Early Carboniferous Alice Springs Orogeny, and source rocks today lie in the dry gas window. In contrast, high-temperature basement granites have resulted in overmaturity of the Arthur Creek Formation in the Dulcie Syncline area. On platform areas adjacent to both these depocentres source rocks reached peak oil generation shortly after the Alice Springs Orogeny; numerous structural leads have been identified in these areas. In addition, an important stratigraphic play occurs in the Late Cambrian Arrinthrunga Formation (Hagen Member) on the southwestern margin of the basin. Key elements of the play are the pinchout of porous oil-stained, vuggy dolostone onto basement where top seal is provided by massive anhydrite while underlying Arthur Creek Formation shale provides a potential source.


Sign in / Sign up

Export Citation Format

Share Document