Comparative in vitro activity of telithromycin and beta-lactam antimicrobials against community-acquired bacterial respiratory tract pathogens in the United States: Findings from the PROTEKT US study, 2000?2001

2004 ◽  
Vol 26 (4) ◽  
pp. 522-530 ◽  
Author(s):  
C STRATTON
2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S378-S378
Author(s):  
Michael A Pfaller ◽  
Rodrigo E Mendes ◽  
Leonard R Duncan ◽  
Robert K Flamm ◽  
Helio S Sader

Abstract Background Ceftaroline (CPT) is a broad-spectrum cephalosporin with activity against S. pneumoniae (SPN), including multidrug-resistant (MDR) strains. CPT fosamil is approved for clinical use in the United States (US) to treat community-acquired bacterial pneumonia (CABP). The AWARE Program monitors the in vitro activity of CPT against clinical bacteria from various infection types. We evaluated the activity of CPT against isolated SPN clinical isolates from US hospitals collected in 2010 through 2016. Methods A total of 8,768 isolates were consecutively collected (1 per patient) from 47 medical centers in 2010–2016 and tested for susceptibility (S) to CPT and comparator agents using CLSI broth microdilution methods. Resistant subgroups included isolates that were nonsusceptible (NS) to penicillin (PCN), ceftriaxone (CRO), amoxicillin-clavulanate (AMC), erythromycin (ERY), clindamycin (CM), and levofloxacin (LEV) as well as MDR (NS to ≥3 classes of agents) and extensively drug resistant (XDR; NS to ≥5 classes). Results CPT inhibited 99.99% of SPN isolates at ≤0.5 mg/L (only 1 isolate had a CPT MIC of 1 mg/L) and remained active against all SPN-resistant (R) subgroups, including PCN-NS (8.7% at ≥4 mg/L), CRO-NS (6.9% at ≥2 mg/L), MDR (21.7%), and XDR (8.4%) strains. CPT activity remained stable against all R subgroups each year. MDR and XDR frequency decreased from 25.0% and 14.1% in 2011 to 17.8% and 3.2% in 2015, respectively; and S to PCN, CRO, AMC, CM, trimethoprim-sulfamethoxazole (TMX), and tetracycline (TET) increased in the same period (Table). The CPT-NS isolate had multiple substitutions in the penicillin binding proteins (PBP), mainly PBP2x, when compared with reference sequences, and showed 31 amino acid alterations in MurM. For MDR isolates, CPT (99.9%S), tigecycline (99.9%S), linezolid (100.0%S), and vancomycin (100.0%S) were the most active agents. Conclusion CPT demonstrated potent and consistent (2010–2016) activity against SPN, including several R phenotypes and the less S serotypes. SPN S to many antibiotics increased from 2011 to 2015, but remained stable in 2015–2016. Increases in S rates could be related to the anti-pneumococcal vaccine PVC-13 introduced in 2010. Disclosures M. A. Pfaller, Allergan: Research Contractor, Research grant; R. E. Mendes, Allergan: Research Contractor, Research grant; L. R. Duncan, Allergan: Research Contractor, Research grant; R. K. Flamm, Allergan: Research Contractor, Research grant; H. S. Sader, Allergan: Research Contractor, Research grant


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S414-S414 ◽  
Author(s):  
Susanne Paukner ◽  
Robert K Flamm ◽  
Steven P Gelone ◽  
Helio S Sader

Abstract Background LEF, the first pleuromutilin antibiotic for IV and oral use in humans, is in Phase 3 clinical trials for the treatment of CABP in adults. In the first of these to be completed, LEF demonstrated noninferiority to moxifloxacin ± linezolid. LEF inhibits bacterial translation by binding the 50S ribosomal subunit at the A- and P-sites in the peptidyl transferase center. CABP is a leading cause of infectious diseases in the United States and increasing antibacterial resistance complicates its treatment. This study investigated the in vitro activity of LEF and comparators against a contemporary set of bacterial respiratory pathogens collected in the United States. Methods Isolates (n = 1674, 1/patient) were collected from 32 medical centers in the United States as part of the SENTRY Surveillance Program. LEF and comparators were tested by CLSI broth microdilution methods, and susceptibility was determined using the CLSI (2018) breakpoints. Results LEF was the most active compound against Streptococcus pneumoniae (MIC50/90 of 0.12/0.12 µg/mL), and its activity was not affected by resistance to other antibiotic classes. S. pneumoniae isolates were susceptible to levofloxacin (99.1%) and ceftriaxone (97.7%), whereas only 53.9%, 63.9%, and 80.4% of isolates were susceptible to macrolides, penicillin (oral), and tetracycline, respectively. LEF also showed potent activity against Staphylococcus aureus (MIC50/90 of 0.06/0.12 µg/mL), including methicillin-resistant (MRSA) isolates (MIC50/90 of 0.06/0.12 µg/mL, 87.1% resistant to erythromycin), Haemophilus influenzae, (MIC50/90 of 0.5/1 µg/mL, 26.9% β-lactamase producing), and Moraxella catarrhalis (MIC50/90 0.06/0.06 µg/mL, 96.5% β-lactamase positive) (figure). Conclusion LEF displayed potent in vitro activity against a contemporary collection of respiratory pathogens from the United States. LEF was active regardless of resistance phenotype to other antibiotic classes including β-lactams, tetracyclines, or macrolides. These results further support the clinical development of lefamulin for the treatment of CABP or other respiratory tract infections. Disclosures S. Paukner, Nabriva: Employee and Shareholder, Salary. R. K. Flamm, Nabriva: Research Contractor, Research grant. S. P. Gelone, Nabriva Therapeutics: Employee, Equity, Shareholder and Salary. Achaogen: Shareholder, Equity, Shareholder. H. S. Sader, Nabriva Therapeutics: Research Contractor, Research support.


2009 ◽  
Vol 53 (5) ◽  
pp. 2171-2175 ◽  
Author(s):  
Helio S. Sader ◽  
Thomas R. Fritsche ◽  
Ronald N. Jones

ABSTRACT The in vitro activity of iclaprim, a novel diaminopyrimidine derivative, was evaluated against 5,937 recent gram-positive clinical isolates collected in the United States and Europe. Iclaprim demonstrated potent activity against Staphylococcus aureus (including methicillin-resistant S. aureus [MRSA]), beta-hemolytic Streptococcus spp., and Enterococcus faecalis strains tested. In addition, iclaprim exhibited bactericidal activity against all S. aureus strains tested, including MRSA.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S644-S644
Author(s):  
Michael D Huband ◽  
Michael A Pfaller ◽  
Jennifer M Streit ◽  
Helio S Sader ◽  
Mariana Castanheira

Abstract Background Omadacycline (OMC) is a new aminomethylcycline antibacterial drug belonging to the tetracycline class, for intravenous or oral administration. It is well tolerated and has proven effective in the treatment of a variety of bacterial infections. OMC is active against bacterial strains expressing the most common clinically relevant tetracycline resistance mechanisms, namely efflux and ribosomal protection. Methods 7,000 clinical isolates were collected during 2019 in the SENTRY Surveillance Program from 31 medical centers in the United States (US). Isolates were obtained from bloodstream infection (23.8%), skin and skin structure infection (21.6%), pneumonia in hospitalized patients (22.7%), urinary tract infection (14.5%), intraabdominal infection (6.2%), community acquired respiratory tract infection (10.3%) and other infection types (0.9%). Identifications were confirmed by MALDI-TOF. One isolate/patient/infection episode was tested. Broth microdilution susceptibility testing was conducted according to CLSI M07 (2018) and M100 (2020) guidelines. Results were interpreted using US FDA and CLSI breakpoint criteria. Results OMC demonstrated potent in vitro activity against Staphylococcus aureus isolates representing multiple infection types (MIC90, 0.12-0.25 mg/L; 94.7%-99.0% susceptible [S]) including MRSA (MIC90, 0.25 mg/L; 96.5% S) (Table). All S. lugdunensis (MIC90, 0.06 mg/L), Enterococcus faecalis (MIC90, 0.12-0.25 mg/L), and Haemophilus influenzae (MIC90, 1 mg/L) isolates were S to OMC. OMC was active against Streptococcus pyogenes isolates from SSSI (MIC90, 0.12 mg/L; 93.3%-98.5%S) including macrolide-resistant (R) strains. Similarly, S. pneumoniae isolates from RTI were S to OMC (MIC90, 0.06-0.12 mg/L; 98.8%-100%S) regardless of resistance to tetracycline or penicillin. Overall, 90.2%-93.6% of Enterobacter cloacae (MIC90, 4 mg/L) and 89.7%-94.7% of Klebsiella pneumoniae (MIC90, 4-8 mg/L) isolates from multiple infection types were S to OMC. Conclusion OMC demonstrated potent in vitro activity against Gram-positive and -negative bacterial pathogens from multiple infection types including SSSI and RTI and isolates displaying resistance to tetracycline, macrolides, and penicillin. Table 1 Disclosures Michael A. Pfaller, MD, Amplyx Pharmaceuticals (Research Grant or Support)Basilea Pharmaceutica International, Ltd (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Department of Health and Human Services (Research Grant or Support)Fox Chase Chemical Diversity Center (Research Grant or Support)Paratek Pharma, LLC (Research Grant or Support) Jennifer M. Streit, BS, A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Merck (Research Grant or Support)Paratek Pharma, LLC (Research Grant or Support) Helio S. Sader, MD, PhD, A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Melinta (Research Grant or Support)Merck (Research Grant or Support)Merck (Research Grant or Support)Paratek Pharma, LLC (Research Grant or Support)Pfizer (Research Grant or Support) Mariana Castanheira, PhD, 1928 Diagnostics (Research Grant or Support)A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Amplyx Pharmaceuticals (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Fox Chase Chemical Diversity Center (Research Grant or Support)GlaxoSmithKline (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Merck (Research Grant or Support)Merck (Research Grant or Support)Merck & Co, Inc. (Research Grant or Support)Merck & Co, Inc. (Research Grant or Support)Paratek Pharma, LLC (Research Grant or Support)Pfizer (Research Grant or Support)Qpex Biopharma (Research Grant or Support)


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S323-S323
Author(s):  
Helio S Sader ◽  
Rodrigo E Mendes ◽  
Michael A Pfaller ◽  
Robert K Flamm

Abstract Background The management of endocarditis requires aggressive and prolonged antimicrobial treatment. Dalbavancin (DALBA) has demonstrated potent in vitro activity against Gram-positive (GP) organisms commonly responsible for endocarditis and is being evaluated for treatment of complicated bacteremia and infective endocarditis. Methods A total of 626 GP organisms were collected from patients with a diagnosis of bacterial endocarditis in the United States (n = 222) and Europe (n = 404) from 2007 to 2017 via the SENTRY Antimicrobial Surveillance Program and were tested for susceptibility (S) against DALBA and comparators by CLSI broth microdilution. Results The most common organisms were S. aureus (48.4%), E. faecalis (EF; 19.6%), and viridans group streptococci (VGS; 12.5%). DALBA and daptomycin (DAPTO) showed complete activity (100.0%S) against S. aureus, but DALBA MICs were 4- to 8-fold lower (table). Linezolid (LZD) and teicoplanin were also active against all SA; whereas vancomycin (VAN) and trimethoprim–sulfamethoxazole were active against 99.7% of isolates. Ceftaroline (CPT) exhibited potent activity against methicillin-susceptible S. aureus (MSSA; MIC90, 0.25 mg/L; 100.0%S) and inhibited 78.4% of methicillin-resistant S. aureus (MRSA) isolates at ≤1 mg/L. All EF isolates were S to ampicillin, DAPTO, and LZD, whereas 97.6% (120/123) of isolates were S to DALBA (MIC90, 0.06 mg/L) and 96.7%S to VAN (MIC90, 2 mg/L). Against EF, DALBA MIC values were 16- to 32-fold lower than DAPTO and VAN. All VGS and coagulase-negative staphylococcal (CoNS) isolates were S to DALBA, DAPTO, VAN, and LZD, and the highest CPT MICs were 0.5 mg/L for VGS and 4 mg/L for CoNS (93.5% inhibited at ≤1 mg/L). Against E. faecium (EFM), 65.7% of isolates were inhibited at ≤0.25 mg/L of DALBA and 62.9% were VAN-S. All EFM were S to DAPTO and LNZ. β-Hemolytic streptococci (BHS) was S to most antimicrobial agents, and only 66.7% of S. pneumoniae (SPN) isolates were PEN-S at ≤0.06 mg/L. Conclusion DALBA exhibited potent in vitro activity against a large collection of GP isolates recovered from patients with endocarditis in the United States and Europe medical centers. These results support further investigations to determine the role of DALBA in the treatment of infective endocarditis. Disclosures H. S. Sader, Allergan: Research Contractor, Research support. R. E. Mendes, Allergan: Research Contractor, Research support. M. A. Pfaller, Allergan: Research Contractor, Research support. R. K. Flamm, Allergan: Research Contractor, Research support.


Sign in / Sign up

Export Citation Format

Share Document