Maturation pathways of dendritic cells in vivo: Distinct function, phenotype and localization of lymphoid- and myeloid-derived dendritic cell subsets in FLT3-ligand treated mice

1997 ◽  
Vol 56 ◽  
pp. 270 ◽  
Author(s):  
B. Pulendran ◽  
J. Smith ◽  
J. Lingappa ◽  
M.K. Kennedy ◽  
M. Teepe ◽  
...  
Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1676-1682 ◽  
Author(s):  
Miriam Merad ◽  
Tomoharu Sugie ◽  
Edgar G. Engleman ◽  
Lawrence Fong

Efficient antigen presentation and T-cell priming are essential components of effective antitumor immunity. Dendritic cells are critical to both of these functions but to date no method has been devised that both targets antigen to these cells and activates them, in situ, in a manner that induces systemic immunity. In this study we combined a dendritic cell growth factor, Flt3 ligand, with a dendritic cell activator, immunostimulatory DNA, and a tumor antigen to activate and load dendritic cells in vivo. Initial studies showed that immunostimulatory DNA not only activates dendritic cells but also prolongs their survival in vivo and in vitro. Following treatment of mice with Flt3 ligand, coadministration of immunostimulatory DNA and antigen induced potent antitumor immunity, resulting in both tumor prevention and regression of existing tumors. CD8 cytotoxic T lymphocytes but not CD4 T cells were required for tumor protection. Natural killer cells also contributed to tumor protection. These results show that dendritic cells can be loaded with antigen and activated, in situ, and provide the basis for dendritic cell- targeted clinical strategies.


2000 ◽  
Vol 165 (1) ◽  
pp. 566-572 ◽  
Author(s):  
Bali Pulendran ◽  
Jacques Banchereau ◽  
Susan Burkeholder ◽  
Elizabeth Kraus ◽  
Elisabeth Guinet ◽  
...  

Science ◽  
2007 ◽  
Vol 315 (5808) ◽  
pp. 107-111 ◽  
Author(s):  
D. Dudziak ◽  
A. O. Kamphorst ◽  
G. F. Heidkamp ◽  
V. R. Buchholz ◽  
C. Trumpfheller ◽  
...  

2004 ◽  
Vol 72 (7) ◽  
pp. 4233-4239 ◽  
Author(s):  
Andrew L. Leisewitz ◽  
Kirk A. Rockett ◽  
Bonginkosi Gumede ◽  
Margaret Jones ◽  
Britta Urban ◽  
...  

ABSTRACT Dendritic cells, particularly those residing in the spleen, are thought to orchestrate acquired immunity to malaria, but it is not known how the splenic dendritic cell population responds to malaria infection and how this response compares with the responses of other antigen-presenting cells. We investigated this question for Plasmodium chabaudi AS infection in C57BL/6 mice. We found that dendritic cells, defined here by the CD11c marker, migrated from the marginal zone of the spleen into the CD4+ T-cell area within 5 days after parasites entered the bloodstream. This contrasted with the results observed for the macrophage and B-cell populations, which expanded greatly but did not show any comparable migration. Over the same time period dendritic cells showed upregulation of CD40, CD54, and CD86 costimulatory molecules that are required for successful T-cell activation. In dendritic cells, the peak intracellular gamma interferon expression (as shown by fluorescence-activated cell sorting) was on day 5, 2 days earlier than the peak expression in B-cells or macrophages. These findings show that splenic dendritic cells are actively engaged in the earliest phase of malarial infection in vivo and are likely to be critical in shaping the subsequent immune response.


Author(s):  
Meng Feng ◽  
Shuping Zhou ◽  
Yong Yu ◽  
Qinghong Su ◽  
Xiaofan Li ◽  
...  

Dendritic cells (DCs), a class of antigen-presenting cells, are widely present in tissues and apparatuses of the body, and their ability to migrate is key for the initiation of immune activation and tolerogenic immune responses. The importance of DCs migration for their differentiation, phenotypic states, and immunologic functions has attracted widespread attention. In this review, we discussed and compared the chemokines, membrane molecules, and migration patterns of conventional DCs, plasmocytoid DCs, and recently proposed DC subgroups. We also review the promoters and inhibitors that affect DCs migration, including the hypoxia microenvironment, tumor microenvironment, inflammatory factors, and pathogenic microorganisms. Further understanding of the migration mechanisms and regulatory factors of DC subgroups provides new insights for the treatment of diseases, such as infection, tumors, and vaccine preparation.


2001 ◽  
Vol 167 (3) ◽  
pp. 1423-1430 ◽  
Author(s):  
Li-Yun Huang ◽  
Caetano Reis e Sousa ◽  
Yasushi Itoh ◽  
John Inman ◽  
Dorothy E. Scott

2020 ◽  
Vol 11 ◽  
Author(s):  
Gaël Auray ◽  
Stephanie C. Talker ◽  
Irene Keller ◽  
Sylvie Python ◽  
Markus Gerber ◽  
...  

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 878-884 ◽  
Author(s):  
Eugene Maraskovsky ◽  
Elizabeth Daro ◽  
Eileen Roux ◽  
Mark Teepe ◽  
Charlie R. Maliszewski ◽  
...  

Abstract Dendritic cells (DCs) represent a family of ontogenically distinct leukocytes involved in immune response regulation. The ability of DCs to stimulate T-cell immunity has led to their use as vectors for immunotherapy vaccines. However, it is unclear whether and to what degree in vitro–generated DCs are representative of DCs that develop in vivo. Treatment of mice with human Flt3 ligand (FL) dramatically increases the number of DCs. We report here that administration of FL to healthy human volunteers increased the number of circulating CD11c+ IL-3Rlow DC (mean 44-fold) and CD11c− IL-3Rhigh DC precursors (mean 12-fold). Moreover, the CD11c+ DCs were efficient stimulators of T cells in vitro. Thus, FL can expand the number of circulating, functionally competent human DCs in vivo.


Sign in / Sign up

Export Citation Format

Share Document