Induction of cyclooxygenase (COX)-2 but not COX-1 gene expression in apoptotic cell death

1998 ◽  
Vol 89 (1-2) ◽  
pp. 142-149 ◽  
Author(s):  
Lap Ho ◽  
Hiroshi Osaka ◽  
Paul S Aisen ◽  
Giulio Maria Pasinetti
1999 ◽  
Vol 10 (2) ◽  
pp. 361-372 ◽  
Author(s):  
Andreas von Knethen ◽  
Dagmar Callsen ◽  
Bernhard Brüne

A toxic dose of the nitric oxide (NO) donorS-nitrosoglutathione (GSNO; 1 mM) promoted apoptotic cell death of RAW 264.7 macrophages, which was attenuated by cellular preactivation with a nontoxic dose of GSNO (200 μM) or with lipopolysaccharide, interferon-γ, and NG-monomethyl-l-arginine (LPS/IFN-γ/NMMA) for 15 h. Protection from apoptosis was achieved by expression of cyclooxygenase-2 (Cox-2). Here we investigated the underlying mechanisms leading to Cox-2 expression. LPS/IFN-γ/NMMA prestimulation activated nuclear factor (NF)-κB and promoted Cox-2 expression. Cox-2 induction by low-dose GSNO demanded activation of both NF-κB and activator protein-1 (AP-1). NF-κB supershift analysis implied an active p50/p65 heterodimer, and a luciferase reporter construct, containing four copies of the NF-κB site derived from the murine Cox-2 promoter, confirmed NF-κB activation after NO addition. An NF-κB decoy approach abrogated not only Cox-2 expression after low-dose NO or after LPS/IFN-γ/NMMA but also inducible protection. The importance of AP-1 for Cox-2 expression and cell protection by low-level NO was substantiated by using the extracellular signal-regulated kinase inhibitor PD98059, blocking NO-elicited Cox-2 expression, but leaving the cytokine signal unaltered. Transient transfection of a dominant-negative c-Jun mutant further attenuated Cox-2 expression by low-level NO. Whereas cytokine-mediated Cox-2 induction relies on NF-κB activation, a low-level NO–elicited Cox-2 response required activation of both NF-κB and AP-1.


2019 ◽  
Vol 101 (4) ◽  
pp. 686-694 ◽  
Author(s):  
Umma Hafsa Preya ◽  
Jeong-Hwa Woo ◽  
Youn Seok Choi ◽  
Jung-Hye Choi

Abstract The overexpression of hepatocyte nuclear factor-1 beta (HNF1β) in endometriotic lesion has been demonstrated. However, the role of HNF1β in endometriosis remains largely unknown. Human endometriotic 12Z cells showed higher level of HNF1β when compared with normal endometrial HES cells. In human endometriotic 12Z cells, HNF1β knockdown increased susceptibility to apoptotic cell death by oxidative stress, while HNF1β overexpression suppressed apoptosis. In addition, HNF1β knockdown and overexpression significantly decreased and increased, respectively, the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-dependent antiapoptotic genes. Knockdown of the antiapoptotic genes significantly reduced the HNF1β-induced resistance against oxidative stress in 12Z cells. Furthermore, HNF1β regulated the transcriptional activity of NF-κB, and an NF-κB inhibitor suppressed the HNF1β-enhanced NF-κB-dependent antiapoptotic gene expression and the resistance of the 12Z cells against cell death. Taken together, these data suggest that HNF1β overexpression may protect endometriotic cells against oxidative damage by augmenting antiapoptotic gene expression.


Blood ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 1383-1393 ◽  
Author(s):  
Toshiyuki Yamada ◽  
Nobuo Kondoh ◽  
Mana Matsumoto ◽  
Midori Yoshida ◽  
Akihiko Maekawa ◽  
...  

Abstract PU.1 is a member of the ets family of transcription factors and is expressed in Friend virus-induced murine erythroleukemia (MEL) cells as a consequence of proviral integration into the PU.1/Spi-1 locus. After induction of MEL cell differentiation by treatment with dimethylsulfoxide (DMSO), expression of the PU.1/Spi-1 gene decreased before induction of β-globin gene expression. Overexpression of PU.1 by using a zinc-inducible expression plasmid in MEL cells resulted in unexpected growth inhibition of the transfectants. When PU.1-overexpressing transfectants were treated with DMSO, growth inhibition became much pronounced and apoptosis was induced. Expression of the β-globin gene was not induced under this condition. Neither growth inhibition nor apoptosis was induced in MEL cells after expression of mutant PU.1 proteins with a deletion of the activation domain or the DNA-binding Ets domain irrespective of the presence of DMSO. Interestingly, β-globin gene expression was not induced in the transfectants expressing the former mutant, whereas it was induced in those expressing the latter one in the presence of DMSO. These results indicate that overexpression of PU.1 in MEL cells results in growth and differentiation inhibition and, in conjunction with DMSO treatment, apoptotic cell death. These results also suggest that the activation domain and the Ets domain of PU.1 contribute differently to induction of these effects.


2010 ◽  
Vol 7 (5) ◽  
pp. 1655-1666 ◽  
Author(s):  
Hao Wu ◽  
Ravikiran Panakanti ◽  
Feng Li ◽  
Ram I. Mahato

2016 ◽  
Vol 32 (8) ◽  
pp. 2041-2052 ◽  
Author(s):  
Hung-Sheng Shang ◽  
Jia-You Liu ◽  
Hsu-Feng Lu ◽  
Han-Sun Chiang ◽  
Chia-Hain Lin ◽  
...  

2002 ◽  
Vol 90 (12) ◽  
pp. 1251-1258 ◽  
Author(s):  
Huifang M. Zhang ◽  
Bobby Yanagawa ◽  
Paul Cheung ◽  
Honglin Luo ◽  
Ji Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document