Plasmodium vivax merozoite surface proteins-3β and-3γ share structural similarities with P. vivax merozoite surface protein-3α and define a new gene family

2001 ◽  
Vol 115 (1) ◽  
pp. 41-53 ◽  
Author(s):  
Mary R Galinski ◽  
Paul Ingravallo ◽  
Claudia Corredor-Medina ◽  
Basima Al-Khedery ◽  
Marinette Povoa ◽  
...  
2020 ◽  
Author(s):  
Fei-hu Shen ◽  
Jessica Jie Ying Ong ◽  
Yi-fan Sun ◽  
Yao Lei ◽  
Rui-lin Chu ◽  
...  

Research on erythrocytic Plasmodium vivax merozoite antigens is critical for identifying potential vaccine candidates in reducing vivax disease. However, many P. vivax studies are constrained by its inability to undergo long-term culture in vitro. Conserved across all Plasmodium spp, merozoite surface proteins are essential for invasion into erythrocytes and highly expressed on erythrocytic merozoites, thus making it an ideal vaccine candidate. In clinical trials, the P. vivax merozoite surface protein 1 (PvMSP1-19) vaccine candidate alone has shown to have limited immunogenicity in patients, hence we incorporate the highly conserved and immunogenic C-terminus of both P. vivax merozoite surface protein 8 (PvMSP8) and PvMSP1-19 to develop a multicomponent chimeric protein rPvMSP8+1 for immunization into mice. The resulted chimeric rPvMSP8+1 antibody was shown to recognize native protein MSP8 and MSP1-19 of mature P. vivax schizonts. In the immunized mice, elevated antibody response was observed in the rPvMSP8+1-immunized group as compared to that immunized with single antigen components. In addition, we examined the growth inhibition of these antibodies against P. cynomolgi (Berok strain) parasites, which is phylogenetically close to P. vivax and sustains long term culture in vitro. Similarly, the chimeric anti-rPvMSP8+1 antibodies recognises P. cynomolgi MSP8 and MSP1-19 on mature schizonts, and showed strong inhibition in vitro via growth inhibition assay. This study provides support for a new multi-antigen-based paradigm rPvMSP8+1 to explore potential chimeric vaccine candidates against P. vivax malaria using sister species, P. cynomolgi.


2014 ◽  
Vol 78 ◽  
pp. 172-184 ◽  
Author(s):  
Benjamin L. Rice ◽  
Mónica M. Acosta ◽  
M. Andreína Pacheco ◽  
Jane M. Carlton ◽  
John W. Barnwell ◽  
...  

Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 394-396 ◽  
Author(s):  
Rita Tewari ◽  
Solabomi A. Ogun ◽  
Ruwani S. Gunaratne ◽  
Andrea Crisanti ◽  
Anthony A. Holder

Abstract Merozoite invasion of red blood cells is crucial to the development of the parasite that causes malaria. Merozoite surface proteins (MSPs) mediate the first interaction between parasite and erythrocyte. In Plasmodium falciparum, they include a complex of products from at least 3 genes (msp1, msp6, and msp7), one of which, msp7, is part of a gene family containing 3 and 6 adjacent members in Plasmodium yoelii and Plasmodium falciparum, respectively. We have identified and disrupted msp7 in the Plasmodium berghei gene family. The protein is expressed in schizonts and colocalizes with MSP1. The synthesis and processing of MSP1 was unaffected in the parasite with the disrupted gene (MSP7ko). Disruption of msp7 was not lethal but affected blood-stage parasite growth. MSP7ko parasites initially grew more slowly than wild-type parasites. However, when reticulocytes were prevalent, the rate of increase in parasitemia was similar, suggesting that MSP7ko parasites prefer to invade and grow within reticulocytes. (Blood. 2005;105:394-396)


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 282
Author(s):  
Elizabeth Villasis ◽  
Katherine Garro ◽  
Angel Rosas-Aguirre ◽  
Pamela Rodriguez ◽  
Jason Rosado ◽  
...  

The measurement of recent malaria exposure can support malaria control efforts. This study evaluated serological responses to an in-house Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) expressed in a Baculovirus system as sero-marker of recent exposure to P. vivax (Pv) in the Peruvian Amazon. In a first evaluation, IgGs against PvMSP8 and PvMSP10 proteins were measured by Luminex in a cohort of 422 Amazonian individuals with known history of Pv exposure (monthly data of infection status by qPCR and/or microscopy over five months). Both serological responses were able to discriminate between exposed and non-exposed individuals in a good manner, with slightly higher performance of anti-PvMSP10 IgGs (area under the curve AUC = 0.78 [95% CI = 0.72–0.83]) than anti-PvMSP8 IgGs (AUC = 0.72 [95% CI = 0.67–0.78]) (p = 0.01). In a second evaluation, the analysis by ELISA of 1251 plasma samples, collected during a population-based cross-sectional survey, confirmed the good performance of anti-PvMSP8 IgGs for discriminating between individuals with Pv infection at the time of survey and/or with antecedent of Pv in the past month (AUC = 0.79 [95% CI = 0.74–0.83]). Anti-PvMSP8 IgG antibodies can be considered as a good biomarker of recent Pv exposure in low-moderate transmission settings of the Peruvian Amazon.


2002 ◽  
Vol 99 (25) ◽  
pp. 16348-16353 ◽  
Author(s):  
C. Putaporntip ◽  
S. Jongwutiwes ◽  
N. Sakihama ◽  
M. U. Ferreira ◽  
W.-G. Kho ◽  
...  

2004 ◽  
Vol 4 (4) ◽  
pp. 309-319 ◽  
Author(s):  
Julian C. Rayner ◽  
Curtis S. Huber ◽  
Dmitry Feldman ◽  
Paul Ingravallo ◽  
Mary R. Galinski ◽  
...  

2021 ◽  
Author(s):  
Sadudee Chotirat ◽  
Narimane Nekkab ◽  
Chalermpon Kumpitak ◽  
Jenni Hietanen ◽  
Michael T White ◽  
...  

AbstractThailand is aiming for malaria elimination by the year 2030. However, the high proportion of asymptomatic infections and the presence of the hidden hypnozoite stage of Plasmodium vivax are impeding these efforts. We hypothesized that a validated surveillance tool utilizing serological markers of recent exposure to P. vivax infection could help to identify areas of ongoing transmission. The objective of this exploratory study was to assess the ability of P. vivax serological exposure markers to detect residual transmission ‘hot-spots’ in Western Thailand. Total IgG levels were measured against a panel of 23 candidate P. vivax serological exposure markers using a multiplexed bead-based assay. A total of 4255 plasma samples from a cross-sectional survey conducted in 2012 of endemic areas in the Kanchanaburi and Ratchaburi provinces were assayed. We compared IgG levels with multiple epidemiological factors that are associated with an increased risk of P. vivax infection in Thailand, including age, gender and spatial location, as well as Plasmodium infection status itself. IgG levels to all proteins were significantly higher in the presence of a P. vivax infection (n=144) (t test, p<0.0001). Overall seropositivity rates varied from 2.5% (PVX_097625, merozoite surface protein 8) to 16.8% (PVX_082670, merozoite surface protein 7), with 43% of individuals seropositive to at least 1 protein. Higher IgG levels were associated with older age (>18 years, p<0.05) and males (17/23 proteins, p<0.05), supporting the paradigm that men have a higher risk of infection than females in this setting. We used a Random Forests algorithm to predict which individuals had exposure to P. vivax parasites in the last 9-months, based on their IgG antibody levels to a panel of 8 previously validated P. vivax proteins. Spatial clustering was observed at the village and regional level, with a moderate correlation between PCR prevalence and sero-prevalence as predicted by the algorithm. Our data provides proof-of-concept for application of such surrogate markers as evidence of recent exposure in low transmission areas. These data can be used to better identify geographical areas with asymptomatic infection burdens that can be targeted in elimination campaigns.


Sign in / Sign up

Export Citation Format

Share Document