Some effects of ground clearance and ground plane boundary layer thickness on the mean base pressure of a bluff vehicle type body

Author(s):  
Kevin P. Garry
1978 ◽  
Vol 100 (4) ◽  
pp. 690-696 ◽  
Author(s):  
A. D. Anderson ◽  
T. J. Dahm

Solutions of the two-dimensional, unsteady integral momentum equation are obtained via the method of characteristics for two limiting modes of light gas launcher operation, the “constant base pressure gun” and the “simple wave gun”. Example predictions of boundary layer thickness and heat transfer are presented for a particular 1 in. hydrogen gun operated in each of these modes. Results for the constant base pressure gun are also presented in an approximate, more general form.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


AIAA Journal ◽  
1985 ◽  
Vol 23 (12) ◽  
pp. 1987-1989 ◽  
Author(s):  
Mauri Tanner

2000 ◽  
Vol 420 ◽  
pp. 47-83 ◽  
Author(s):  
NIKOLAUS A. ADAMS

The turbulent boundary layer along a compression ramp with a deflection angle of 18° at a free-stream Mach number of M = 3 and a Reynolds number of Reθ = 1685 with respect to free-stream quantities and mean momentum thickness at inflow is studied by direct numerical simulation. The conservation equations for mass, momentum, and energy are solved in generalized coordinates using a 5th-order hybrid compact- finite-difference-ENO scheme for the spatial discretization of the convective fluxes and 6th-order central compact finite differences for the diffusive fluxes. For time advancement a 3rd-order Runge–Kutta scheme is used. The computational domain is discretized with about 15 × 106 grid points. Turbulent inflow data are provided by a separate zero-pressure-gradient boundary-layer simulation. For statistical analysis, the flow is sampled 600 times over about 385 characteristic timescales δ0/U∞, defined by the mean boundary-layer thickness at inflow and the free-stream velocity. Diagnostics show that the numerical representation of the flow field is sufficiently well resolved.Near the corner, a small area of separated flow develops. The shock motion is limited to less than about 10% of the mean boundary-layer thickness. The shock oscillates slightly around its mean location with a frequency of similar magnitude to the bursting frequency of the incoming boundary layer. Turbulent fluctuations are significantly amplified owing to the shock–boundary-layer interaction. Reynolds-stress maxima are amplified by a factor of about 4. Turbulent normal and shear stresses are amplified differently, resulting in a change of the structure parameter. Compressibility affects the turbulence structure in the interaction area around the corner and during the relaxation after reattachment downstream of the corner. Correlations involving pressure fluctuations are significantly enhanced in these regions. The strong Reynolds analogy which suggests a perfect correlation between velocity and temperature fluctuations is found to be invalid in the interaction area.


2009 ◽  
Vol 638 ◽  
pp. 267-303 ◽  
Author(s):  
PIERRE RICCO

The response of the Blasius boundary layer to free-stream vortical disturbances of the convected gust type is studied. The vorticity signature of the boundary layer is computed through the boundary-region equations, which are the rigorous asymptotic limit of the Navier–Stokes equations for low-frequency disturbances. The method of matched asymptotic expansion is employed to obtain the initial and outer boundary conditions. For the case of forcing by a two-dimensional gust, the effect of a wall-normal wavelength comparable with the boundary-layer thickness is taken into account. The gust viscous dissipation and upward displacement due to the mean boundary layer produce significant changes on the fluctuations within the viscous region. The same analysis also proves useful for computing to second-order accuracy the boundary-layer response induced by a three-dimensional gust with spanwise wavelength comparable with the boundary-layer thickness. It also follows that the boundary-layer fluctuations of the streamwise velocity match the corresponding free-stream velocity component. The velocity profiles are compared with experimental data, and good agreement is attained.The generation of Tollmien–Schlichting waves by the nonlinear mixing between the two-dimensional unsteady vorticity fluctuations and the mean flow distortion induced by localized wall roughness and suction is also investigated. Gusts with small wall-normal wavelengths generate significantly different amplitudes of the instability waves for a selected range of forcing frequencies. This is primarily due to the disparity between the streamwise velocity fluctuations in the free stream and within the boundary layer.


2007 ◽  
Vol 129 (9) ◽  
pp. 1147-1156 ◽  
Author(s):  
Robert Martinuzzi ◽  
Mazen AbuOmar ◽  
Eric Savory

The turbulent flow around square-based, surface-mounted pyramids, of height h, in thin and thick boundary layers was experimentally investigated. The influence of apex angle ζ and angle of attack α was ascertained from mean surface flow patterns and ground plane pressure measurements taken at a Reynolds number of 3.3×104 based on h. For both boundary layer flows, it was found that the normalized ground plane pressure distributions in the wakes of all the pyramids for all angles of attack may be scaled using an attachment length (Xa′) measured from the upstream origin of the separated shear layer to the near-wake attachment point on the ground plane. It was also shown that this scaling is applicable to data reported in the literature for other bluff body shapes, namely, cubes, cones, and hemispheres. The ground plane pressure coefficient distributions in the upstream separated flow region, for all the shapes and angles of attack examined, were found to collapse onto two curves by scaling their streamwise location using a length scale (Xu), which is a function of the frontal projected width of the body (w′) and the height of the body. These two curves were for cases where δ∕h<1 (“thin” boundary layer) or δ∕h≥1 (“thick” boundary layer), where δ is the oncoming boundary layer thickness. Further work is required to provide a more detailed statement on the influence of boundary layer thickness (or state) on the upstream pressure field scaling.


This paper is concerned with the parallel flow of conducting fluid along an insulating pipe of uniform cross-section perpendicular to which a uniform magnetic field, B 0 , is applied. The cross-section is supposed to have tangents parallel to B 0 only at isolated points of its peri­meter. The density, kinematic viscosity and electrical conductivity of the fluid are denoted by ρ, v and σ, respectively. It is known (Shercliff 1962) that, in the limit B 0 → ∞, the flow may be divided into three parts: (i) a Hartmann boundary layer, thickness ~ ( ρv /σ) ½ ( B 0 cos θ ) -1 , at every point of the wall except those a t which cos θ = 0, where θ is the angle between B 0 and the normal to the wall at the point concerned, (ii) a ‘mainstream’, far from the walls, which is controlled by the Hartmann layers and in which a quasi-hydrostatic balance subsists between the Lorentz force and the applied pressure gradient driving the motion, and (iii) a complicated boundary-layer singularity, at each point of the wall at which cos θ = 0, which is controlled by the flow in regions (i) and (ii). The solutions for regions (i) and (ii) can be obtained easily by Shercliff’s methods. It is the purpose of this paper to elucidate region (iii). Here the boundary-layer thickness is O ( M 2/3 ) and extends round the periphery of the wall for a distance which is where O ( M -½ is a Hartmann number, B 0 L (σ/ ρv ) ½ , based on a typical dimension, L , of the pipe. The corresponding contribution to U , the mean flow down the duct, is of order M -2/3 . In fact, for a circular duct of radius a ( = L ), the main case discussed in this paper, it contributes the final term to the following expression: U = 64/3π U 0 [1/ M - 3π/2 M 2 + 3.273/M 7 η ] Here U 0 is the mean flow in the absence of field.


Sign in / Sign up

Export Citation Format

Share Document