Bacteria in gel probes: comparison of the activity of immobilized sulfate-reducing bacteria with in situ sulfate reduction in a wetland sediment

2001 ◽  
Vol 46 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Harry M Edenborn ◽  
Lynn A Brickett
1999 ◽  
Vol 39 (7) ◽  
pp. 41-47 ◽  
Author(s):  
Satoshi Okabe ◽  
Hisashi Satoh ◽  
Tsukasa Itoh ◽  
Yoshimasa Watanabe

The vertical distribution of sulfate-reducing bacteria (SRB) in microaerophilic wastewater biofilms grown on fully submerged rotating disk reactors (RDR) was determined by the conventional culture-dependent MPN method and in situ hybridization of fluorescently-labelled 16S rRNA-targeted oligonucleotide probes for SRB in parallel. Chemical concentration profiles within the biofilm were also measured using microelectrodes for O2, S2-, NO3- and pH. In situ hybridization revealed that the SRB probe-stained cells were distributed throughout the biofilm even in the oxic surface zone in all states from single scattered cells to clustered cells. The higher fluorescence intensity and abundance of SRB probe-stained cells were found in the middle part of the biofilm. This result corresponded well with O2 and H2S concentration profiles measured by microelectrodes, showing sulfate reduction was restricted to a narrow anaerobic zone located about 500 μm below the biofilm surface. Results of the MPN and potential sulfate reducing activity (culture-dependent approaches) indicated a similar distribution of cultivable SRB in the biofilm. The majority of the general SRB probe-stained cells were hybridized with SRB 660 probe, suggesting that one important member of the SRB in the wastewater biofilm could be the genus Desulfobulbus. An addition of nitrate forced the sulfate reduction zone deeper in the biofilm and reduced the specific sulfate reduction rate as well. The sulfate reduction zone was consequently separated from O2 and NO3- respiration zones. Anaerobic H2S oxidation with NO3- was also induced by addition of nitrate to the medium.


2012 ◽  
Vol 9 (3) ◽  
pp. 1033-1040 ◽  
Author(s):  
M. Barlett ◽  
K. Zhuang ◽  
R. Mahadevan ◽  
D. Lovley

Abstract. Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30–40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 599-603 ◽  
Author(s):  
Ryoko Yamamoto-Ikemoto ◽  
Saburo Matsui ◽  
Tomoaki Komori ◽  
Edja. Kofi. Bosque-Hamilton

The interactions between filamentous sulfur bacteria (FSB), sulfate reducing bacteria (SRB) and poly-P accumulating bacteria (PAB) in the activated sludge of a municipal plant operated under anaerobic-oxic conditions were examined in batch experiments using return sludge (RAS) and settled sewage. Phosphate release and sulfate reduction occurred simultaneously under anaerobic conditions. SRB were more sensitive to temperature changes than PAB. SRB played an important role in the decomposition of propionate to acetate. When the sulfate reduction rates were high, there was a tendency for the maximum release of phosphate also to be high. This was explained by the fact that PAB utilized the acetate produced by SRB. Sulfur oxidizing bacteria were sensitive to temperature change. When the sulfate reduction rate was high, the sulfide oxidizing rate was also high and filamentous bulking occurred. The results showed that sulfate reduction was a cause of filamentous bulking due to Type 021N that could utilize reduced sulfur.


2020 ◽  
Vol 9 (6) ◽  
pp. 1920 ◽  
Author(s):  
Ivan Kushkevych ◽  
Jorge Castro Sangrador ◽  
Dani Dordević ◽  
Monika Rozehnalová ◽  
Martin Černý ◽  
...  

Background: Inflammatory bowel diseases (IBDs) are multifactorial illnesses of the intestine, to which microorganisms are contributing. Among the contributing microorganisms, sulfate-reducing bacteria (SRB) are suggested to be involved in the process of bowel inflammation due to the production of hydrogen sulfide (H2S) by dissimilatory sulfate reduction. The aims of our research were to physiologically examine SRB in fecal samples of patients with IBD and a control group, their identification, the study of the process of dissimilatory sulfate reduction (sulfate consumption and H2S production) and biomass accumulation. Determination of biogenic elements of the SRB and evaluation of obtained parameters by using statistical methods were also included in the research. The material for the research consisted of 14 fecal samples, which was obtained from patients and control subjects. Methods: Microscopic techniques, microbiological, biochemical, biophysical methods and statistical analysis were included. Results: Colonies of SRB were isolated from all the fecal samples, and subsequently, 35 strains were obtained. Vibrio-shaped cells stained Gram-negative were dominant in all purified studied strains. All strains had a high percentage of similarity by the 16S rRNA gene with deposited sequences in GenBank of Desulfovibrio vulgaris. Cluster analysis of sulfate reduction parameters allowed the grouping of SRB strains. Significant (p < 0.05) differences were not observed between healthy individuals and patients with IBD with regard to sulfate reduction parameters (sulfate consumption, H2S and biomass accumulation). Moreover, we found that manganese and iron contents in the cell extracts are higher among healthy individuals in comparison to unhealthy individuals that have an intestinal bowel disease, especially ulcerative colitis. Conclusions: The observations obtained from studying SRB emphasize differences in the intestinal microbial processes of healthy and unhealthy people.


2004 ◽  
Vol 70 (3) ◽  
pp. 1608-1616 ◽  
Author(s):  
Ketil Bernt S�rensen ◽  
Donald E. Canfield ◽  
Aharon Oren

ABSTRACT The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120‰, and sulfate reduction was strongly inhibited at an in situ salinity of 215‰. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180‰ or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120‰.


2008 ◽  
Vol 154 (1-3) ◽  
pp. 1060-1065 ◽  
Author(s):  
Aijie Wang ◽  
Nanqi Ren ◽  
Xu Wang ◽  
Duujong Lee

2000 ◽  
Vol 66 (2) ◽  
pp. 820-824 ◽  
Author(s):  
Mauro Tonolla ◽  
Antonella Demarta ◽  
Sandro Peduzzi ◽  
Dittmar Hahn ◽  
Raffaele Peduzzi

ABSTRACT Comparative sequence analysis of a 16S rRNA gene clone library from the chemocline of the meromictic Lake Cadagno (Switzerland) retrieved two clusters of sequences resembling sulfate-reducing bacteria within the family Desulfovibrionaceae. In situ hybridization showed that, similar to sulfate-reducing bacteria of the familyDesulfobacteriaceae, bacteria of one cluster with similarity values to the closest cultured relatives of between 92.6 and 93.1% resembled free cells or cells loosely attached to other cells or debris. Bacteria of the second cluster closely related toDesulfocapsa thiozymogenes DSM7269 with similarity values between 97.9 and 98.4% were generally associated with aggregates of different small-celled phototrophic sulfur bacteria, suggesting a potential interaction between the two groups of bacteria.


Sign in / Sign up

Export Citation Format

Share Document