Radiation-induced impairment of bone healing in the rat femur: effects of radiation dose, sequence and interval between surgery and irradiation

1998 ◽  
Vol 48 (3) ◽  
pp. 259-265 ◽  
Author(s):  
Michael Arnold ◽  
Paul Stas ◽  
Johann Kummermehr ◽  
Susanne Schultz-Hector ◽  
Klaus-Ruediger Trott
2015 ◽  
Author(s):  
Amy B. Reed ◽  
Melissa L Kirkwood

Modern vascular surgeons perform an ever-increasing number of complex endovascular procedures, largely based on patient preference, decreased length of stay, and improved outcome. With the upsurge of endovascular cases, concern has grown regarding the harmful effects of radiation exposure delivered to the patient and the operator. Surgeon education on the appropriate use of fluoroscopic operating factors coupled with appropriate training in radiation safety has been shown to decrease radiation dose. This review elucidates dose terminology and metrics, possible radiation-induced injuries, risk factors for deterministic injury, and radiation safety principles and techniques. Tables provide practical tips to lower patient and operator radiation dose during fluoroscopically guided intervention, and National Council on Radiation Protection & Measurements recommended dose limits for occupational exposure. Figures illustrate reference air kerma, radiation-induced skin injury, effects of image receptor and table position, and operator exposure. This review contains 4 figures, 3 tables, and 53 references.


2012 ◽  
Vol 482-484 ◽  
pp. 1585-1591 ◽  
Author(s):  
Cheng Fu Yang ◽  
Wei Wen Wang ◽  
Hsin Hwa Chen ◽  
Wei Tan Sun ◽  
Chi Lin Shiau ◽  
...  

In this paper, we report a new phenomenon observed in the gamma-ray radiation-induced hydrophobic effects on an Invar surface: When the Invar alloy is subjected to different doses of gamma-ray irradiation, the contact angle increases with the radiation dose. Invar samples with exposed to a higher dose appear more hydrophobic, but this tendency disappears following post-irradiation etching. The contact angles of the irradiated and etched Invar samples can be restored back to a stable value with small deviation after 30 min of annealing at 150°C. X-ray diffraction (XRD) analysis found no crystalline structural changes. High resolution field emission scanning microscope (FE-SEM) analyses showed that irradiation might induce crack-like surfaces which could be removed at higher radiation dose in the following acid etchings. It is believed that the chemical bonds of Invar oxide on the surface were broken by the gamma-ray irradiation, thus raising the likelihood of binding with free ions in the air and resulting in the exclusion of the hydrophilic OH bonds, leaving a hydrophobic post-irradiation Invar surface.


2003 ◽  
Vol 14 (3) ◽  
pp. 199-212 ◽  
Author(s):  
A. Vissink ◽  
J. Jansma ◽  
F.K.L. Spijkervet ◽  
F.R. Burlage ◽  
R.P. Coppes

In addition to anti-tumor effects, ionizing radiation causes damage in normal tissues located in the radiation portals. Oral complications of radiotherapy in the head and neck region are the result of the deleterious effects of radiation on, e.g., salivary glands, oral mucosa, bone, dentition, masticatory musculature, and temporomandibular joints. The clinical consequences of radiotherapy include mucositis, hyposalivation, taste loss, osteoradionecrosis, radiation caries, and trismus. Mucositis and taste loss are reversible consequences that usually subside early post-irradiation, while hyposalivation is normally irreversible. Furthermore, the risk of developing radiation caries and osteoradionecrosis is a life-long threat. All these consequences form a heavy burden for the patients and have a tremendous impact on their quality of life during and after radiotherapy. In this review, the radiation-induced changes in healthy oral tissues and the resulting clinical consequences are discussed.


2014 ◽  
Vol 2 ◽  
Author(s):  
Kazbek Apsalikov ◽  
Talgat Muldagaliev ◽  
Rustem Apsalikov ◽  
Shinar Serikkankyzy ◽  
Zaure Zholambaeva

Introduction: Lengthy clinical and epidemiological studies at the Research Institute of Radiation Medicine and Ecology have discovered basic patterns of long-term effects from ionizing radiation in population groups exposed to radiation risk. Methodology for calculating injury from radiation risk factors has been developed and implemented to minimize the effects of the Semipalatinsk nuclear test site (SNTS).Material and methods: We analyzed materials from the database of the Scientific Medical Register that were exposed to radiation as a result of SNTS. We analyzed both male and female populations of the Abay, Beskaragai and Zhanasemei, Kokpekti (control) areas of East-Kazakhstan region (EKR) from 2008-2012. These populations were split into three groups allocated by the generation. The first group represented persons born from the period of 01/01/1930 -08/01/1949 and their children born from the period of 10/09/1949-12/31/1962. The second group were persons born after 01/01/1963. The third group served as the control and were persons who immigrated to these areas after 1990.Results: There was an increased incidence of cancer (21.5%, p < 0.000734), cardiovascular diseases (10.2%); respiratory problems (9.6%), gastrointestinal issues (9.1%, p < 0.00371-0.00679) in the first group. The effect of the radiation dose has not been fully stuided among the subjects in the second group.The major causes of excess mortality in the first group were neoplams (30.6%), hypertension (23.8%), and myocardial infarction (22.6%). The effects of radiation influenced mortality in the second group were 2-2.5 times lower than the first group.Conclusion: There is a correlation between the size of the radiation dose, the risk profile, and age at the moment of radiation exposure with trends of morbidity and mortality in the radiation exposed areas.


2014 ◽  
Vol 30 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Rebecca J. Ormsby ◽  
Mark D. Lawrence ◽  
Benjamin J. Blyth ◽  
Katrina Bexis ◽  
Eva Bezak ◽  
...  

2021 ◽  
Vol 6 (59) ◽  
pp. eabc6998
Author(s):  
Chuanhui Han ◽  
Victoria Godfrey ◽  
Zhida Liu ◽  
Yanfei Han ◽  
Longchao Liu ◽  
...  

The inflammasome promotes inflammation-associated diseases, including cancer, and contributes to the radiation-induced tissue damage. However, the role of inflammasome in radiation-induced antitumor effects is unclear. We observed that tumors transplanted in Casp1−/− mice were resistant to radiation treatment compared with tumors in wild-type (WT) mice. To map out which molecule in the inflammasome pathway contributed to this resistant, we investigated the antitumor effect of radiation in several inflammasome-deficient mice. Tumors grown in either Aim2−/− or Nlrp3−/− mice remained sensitive to radiation, like WT mice, whereas Aim2−/−Nlrp3−/− mice showed radioresistance. Mechanistically, extracellular vesicles (EVs) and EV-free supernatant derived from irradiated tumors activated both Aim2 and Nlrp3 inflammasomes in macrophages, leading to the production of interleukin-1β (IL-1β). IL-1β treatment helped overcome the radioresistance of tumors growing in Casp1−/− and Aim2−/−Nlrp3−/− mice. IL-1 signaling in dendritic cells (DCs) promoted radiation-induced antitumor immunity by enhancing the cross-priming activity of DCs. Overall, we demonstrated that radiation-induced activation of the AIM2 and NLRP3 inflammasomes coordinate to induce some of the antitumor effects of radiation by triggering IL-1 signaling in DCs, leading to their activation and cross-priming.


Sign in / Sign up

Export Citation Format

Share Document