Ordered gas-bubble precursors to nanoporous layer formation in helium-implanted metals

Author(s):  
P.B. Johnson ◽  
P.W. Gilberd
2020 ◽  
Vol 386 ◽  
pp. 125467 ◽  
Author(s):  
João Pedro Aquiles Carobolante ◽  
Kerolene Barboza da Silva ◽  
Javier Andres Munoz Chaves ◽  
Marcela Ferreira Dias Netipanyj ◽  
Ketul Chandrakant Popat ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1817
Author(s):  
Takumi Ito ◽  
Erika Tabata ◽  
Yuki Ushioda ◽  
Takuya Fujima

A hierarchical nanoporous layer (HNL) can be formed on the silicate glass surface by simple alkali etching. Though it reportedly exhibits various useful functions, such as superhydrophilicity, optical anti-reflection, and material impregnation, the principle of its formation still remains unclear. In this study, HNL formation behavior was experimentally investigated while using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) to clarify the role of boron contained in glass. As a result, it was found that HNL formation was significantly promoted by boron, which was rapidly eluted prior to alkali and alkaline earth metals. This suggests that boron, which forms the skeleton structure of glass together with Si and O, elutes to partially decompose the skeleton, and extends the elution route for HNL formation.


1990 ◽  
Vol 87 ◽  
pp. 1597-1607 ◽  
Author(s):  
L Benedetti ◽  
M Borsari ◽  
C Fontanesi ◽  
G Battistuzzi Gavioli

2020 ◽  
Author(s):  
◽  
Linas Sinkevičius
Keyword(s):  

Investigation of polypyrrole layer formation peculiarities and formation of uric acid molecular imprints


2019 ◽  
Vol 46 (3) ◽  
pp. 261-275
Author(s):  
César Yepes ◽  
Jorge Naude ◽  
Federico Mendez ◽  
Margarita Navarrete ◽  
Fátima Moumtadi

Author(s):  
Higor Veiga ◽  
Edgar Ofuchi ◽  
Henrique Stel ◽  
Ernesto Mancilla ◽  
Dalton Bertoldi ◽  
...  
Keyword(s):  

Author(s):  
Dmitriy Parshin

The article gives an example of controlling the stress state parameters of additively manufactured products. The study was carried out on the basis of a developed non-classical mechanical model of the process of layer-by-layer formation of a coating of arbitrary thickness on a cylindrical substrate. The model is based on modern concepts of the mechanics of continuously growing bodies and allows one to obtain fairly simple analytical dependencies. On the basis of the latter, the problem of technological control of the evolution of contact pressure at the substrate – coating interface is solved in the article. A number of practically significant conclusions have been made.


Sign in / Sign up

Export Citation Format

Share Document