Ethylene production and responses to exogenous ethylene in senescing petals of Chrysanthemum morifolium RAM cv. Unsei

Plant Science ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Carlos G. Bartoli ◽  
Juan J. Guiamet ◽  
Edgardo R. Montaldi
1971 ◽  
Vol 24 (4) ◽  
pp. 885 ◽  
Author(s):  
M Vendrell ◽  
WB Mcglasson

A temporary ethylene treatment, sufficient to stimulate ripening in banana fruit tissue, partly suppresses endogenous ethylene production and the evolution of ethylene from methionine. The production of endogenous ethylene does not return to rates normal for naturally ripening fruit after the exogenous ethylene is removed. The extent of inhibition is related to the concentration of applied ethylene up to 5-10 p.p.m., and to the duration of treatment within the period 12 hI' to 3 days. Other characteristics of ripening appear to develop normally, except in the shorter treatments, where respiration shows a lower climacteric peak and chlorophyll breakdown is delayed.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 463f-463
Author(s):  
Guiwen Chene ◽  
Carlos Crisosto ◽  
David Garner

During the 1993 and 1994 seasons, the response of Kiwifruit (Actinidia deliciosa var. Hayward) flesh softening to exogenous ethylene applications was studied on fruit collected weekly from cold storage and directly from the vines. Fruit samples from both sources, were induced to ripen with and without ethylene preconditioning treatment (10 ppm, 24h at 0C). During the first 3 weeks of fruit collection, flesh firmness decreased and SSC accumulation increased faster in ethylene treated kiwifruit than in the untreated. After this period, when kiwifruit had close to 9 pounds flesh firmness, ethylene treated and untreated kiwifruit softened at the same rate. Ethylene treatment did not enhance kiwifruit CO2 and ethylene production except at the first harvest time. Furthermore, ethylene treated kiwifruit did not have higher respiration and ethylene rates than untreated kiwifruit when measured at 0, 5 and 20C.


HortScience ◽  
2014 ◽  
Vol 49 (8) ◽  
pp. 1056-1060 ◽  
Author(s):  
Wei Hu ◽  
Ju-Hua Liu ◽  
Xiao-Ying Yang ◽  
Jian-Bin Zhang ◽  
Cai-Hong Jia ◽  
...  

The banana, a typical climacteric fruit, undergoes a postharvest ripening process followed by a burst in ethylene production that signals the beginning of the climacteric period. Postharvest ripening plays an important role in improving the quality of the fruit as well as limiting its shelf life. To investigate the role of glutamate decarboxylase (GAD) in climacteric ethylene biosynthesis and fruit ripening in postharvest banana, a GAD gene was isolated from banana, designated MuGAD. Coincidently with climacteric ethylene production, MuGAD expression as well as the expression of the genes encoding the Musa 1-aminocyclopropane-1-carboxylate synthase (MaACS1) and Musa 1-aminocyclopropane-1-carboxylate oxidase (MaACO1) greatly increased during natural ripening and in ethylene-treated banana. Moreover, ethylene biosynthesis, ripening progress, and MuGAD, MaACS1, and MaACO1 expression were enhanced by exogenous ethylene application and inhibited by 1-methylcyclopropene (1-MCP). Taken together, our results suggested that MuGAD is involved in the fruit ripening process in postharvest banana.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 571d-571
Author(s):  
Jean-Claude Pech

We have generated transgenic Cantaloupe Charentais melons expressing an ACC oxidase antisense gene in which ethylene production was reduced to less than 1% as compared to control untransformed fruits. As a consequence, some aspects of the ripening process were strongly inhibited (aroma volatiles production, chlorophyll and cell wall degradation, pigmentation of the rind, activation of peduncular abscission zone) while others remained unchanged (coloration of the flesh), allowing us to distinguish between ethylene-dependent and ethylene-independent pathways. Some postharvest characteristics of the transgenic fruit are described in terms of expression of ripening-related genes, respiratory behavior, and biochemical composition. Data also are presented showing that exogenous ethylene treatments could reverse the antisense phenotype.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 979A-979
Author(s):  
Jeffrey K. Brecht ◽  
Kimberly M. Cordasco

Abscission of cluster tomatoes commonly limits product marketability in the retail environment. Ripening and exogenous ethylene exposure are assumed to play important roles in cluster tomato fruit abscission. `Clarance' and `DRW7229' fruit harvested at either mature green or partially ripened stages did not abscise during storage for 2 weeks at 20 °C and 95% to 100% relative humidity (RH), although respiration and ethylene production indicated that all fruit reached the postclimacteric stage. Exogenous ethylene (1 or 10 ppm) exposure for 8 days at 20 °C and 95% to 100% RH also did not induce fruit abscission for either cultivar, although pedicel and sepal yellowing were observed. Fruit from clusters stored at 20 °C and 20% or 50% RH abscised if sepal shrivel became noticeable before the fruit reached the full red ripeness stage, while no abscission occurred in fruit that reached the full red stage prior to the appearance of sepal shrivel; no fruit stored in 95% to 100% RH abscised. Fruit that ripened prior to the appearance of sepal shrivel were “plugged” (i.e., tissue underlying the stem scar was pulled out) if manual fruit detachment from the pedicel was attempted. These results indicate that there is an interaction of water loss and fruit ripening in promoting abscission zone development in cluster tomatoes.


1995 ◽  
Author(s):  
William Woodson ◽  
Shimon Mayak ◽  
Haim Rabinowitch

The senescence of carnation (Dianthus caryophyllus L.) flowers is associated with increased production of the phytohormone ethylene, which in turn serves to initiate and regulate the processes involved in programmed petal death. We investigated the regulation of ethylene production and petal senescence in carnation. Several carnation genotypes were identified that exhibited extended vase-life in comparison to flowers from typical commercial cultivars. The capacity of these genotypes to produce ethylene during postharvest vase-life and to respond to exogenous ethylene was investigated. Several genotypes, represented by 'Sandrosa' and 87-37G produced little ethylene durig their postharvest vase-life and as a result failed to exhibit the symptoms (in-rolling and wilting) typical of flowers producing elevated levels of ethylene. These genotypes were further separated by their capacity to respond to exogenous ethylene by both increased ethylene synthesis and premature petal senescence. In one case a genotype (799) was identified that was not capable of responding to exogenous ethylene by either increased ethylene production or premature petal senescence. The regulation of ethylene production during petal senescence was investigated both at the enzyme and gene levels. A full length cDNA was identified for the petal senescence-related ACC synthase gene. Utilizing this, and other ethylene biosynthetic pathway cDNA probes, an increase in both ACC synthase and ACC oxidase mRNAs were detected following ethylene treatment. An increase in ACC oxidase mRNA and enzyme activity was detected within 2-3 h following ethylene treatment, indicating the expression of this gene is an early response to ethylene. An investigation into the expression of novel proteins during petal senescence revealed a number of polypeptides increased in abundance and possibly play a role in the regulation or biochemical processes of senescence. One polypeptide of 70 kDa was identified as being encoded by the previously characterized gene SR12 and possibly represents a b-galactosidase involved in the remobilization of carbohydrates during senescence.


1990 ◽  
Vol 115 (1) ◽  
pp. 123-127 ◽  
Author(s):  
Robert L. Geneve ◽  
Wesley P. Hackett ◽  
Bert T. Swanson

Exogenous ethylene could not substitute for NAA to induce adventitious root initiation in juvenile petiole explants of English ivy (Hedera helix L.), indicating that the action of auxin-stimulated root initiation was not directly mediated through ethylene production. Mature petioles did not initiate roots under any auxin or ethylene treatment combination. Ethephon or ACC supplied at 50 or 100 μm was inhibitory to NAA-induced root initiation in juvenile petioles. The pattern of ethylene production stimulated by NAA application was significantly different in juvenile and mature petioles. Ethylene evolution by juvenile petioles declined to near control levels during from 6 to 12 days after NAA application. Reduction in ethylene production was due to reduced availability of ACC in juvenile petioles. Mature petioles continued to produce ethylene at elevated levels throughout the course of the experiment. Ethylene does not appear to play a significant role in the differential root initiation response of juvenile and mature petioles treated with NAA. However, ethylene appeared to have an inhibitory effect during root elongation stages of adventitious root development in juvenile petioles. Chemical names used: 1-aminocyclopropane-1-carboxylic acid (ACC); 1-napthaleneacetic acid (NAA); 2-chloroethylphosphonic acid (ethephon).


1997 ◽  
Vol 122 (6) ◽  
pp. 748-751 ◽  
Author(s):  
Monique Guis ◽  
Rinaldo Botondi ◽  
Mohamed Ben-Amor ◽  
Ricardo Ayub ◽  
Mondher Bouzayen ◽  
...  

Transgenic Cantaloupe Charentais melons (Cucumis melo var. cantalupensis Naud. `Védrantais') exhibiting strong inhibition of ethylene production were used as a model to discriminate between ethylene-regulated and ethylene-independent ripening pathways. Compared to wild-type fruit, transgenic fruit did not undergo significant yellowing of the rind and softening of the flesh. However, these effects were completely reversed by treating transgenic fruit with 50 μL·L-1 exogenous ethylene. Pigmentation of the flesh occurred early before the onset of the climacteric and was thus unaffected by ethylene inhibition in transgenic fruit. Total soluble solids accumulated at the same rate in both types of fruit until 38 days after pollination when wild-type fruit abscissed. However, as ethylene-inhibited fruit failed to develop a peduncular abscission zone, they remained attached to the plant and accumulated higher amounts of sugars, mainly sucrose. Harvesting transgenic fruit resulted in a small but significant increase of internal ethylene associated with softening of the flesh.


Sign in / Sign up

Export Citation Format

Share Document