A numerical and experimental approach to optimise sheet stamping technologies: part II — aluminium alloys rubber-forming

2001 ◽  
Vol 22 (4) ◽  
pp. 299-315 ◽  
Author(s):  
Giuseppe Sala
2018 ◽  
Vol 224 ◽  
pp. 03005
Author(s):  
Ekaterina Nosova ◽  
Fedor Grechnikov ◽  
Natalia Lukonina

Sheet blanks’ structure uniformity determines their ability to sheet stamping. Level of entropy may represent the characteristic of structural uniformity. Structural entropy was received from strain curves recalculation for sheet blanks from aluminium alloys Al-2Mg and Al-6Mg are presented in the work. Stain curves were provided for blanks after cold deformation and annealing at temperatures 250, 350 И 450˚C. Estimation of grain size uniformity was made. Effect of annealing temperature on structural entropy and grain structure uniformity was found. It was shown that annealing temperature increasing leads to structural entropy decreasing. Ununiformity of grain size achieves the minimal values after annealing at temperature 350˚C for both alloys, and then ununiformity grows after annealing at temperature 450˚C.


Author(s):  
Mircea Fotino

The use of thick specimens (0.5 μm to 5.0 μm or more) is one of the most resourceful applications of high-voltage electron microscopy in biological research. However, the energy loss experienced by the electron beam in the specimen results in chromatic aberration and thus in a deterioration of the effective resolving power. This sets a limit to the maximum usable specimen thickness when investigating structures requiring a certain resolution level.An experimental approach is here described in which the deterioration of the resolving power as a function of specimen thickness is determined. In a manner similar to the Rayleigh criterion in which two image points are considered resolved at the resolution limit when their profiles overlap such that the minimum of one coincides with the maximum of the other, the resolution attainable in thick sections can be measured by the distance from minimum to maximum (or, equivalently, from 10% to 90% maximum) of the broadened profile of a well-defined step-like object placed on the specimen.


Author(s):  
A. Cziráki ◽  
E. Ková-csetényi ◽  
T. Torma ◽  
T. Turmezey

It is known that the formation of cavities during superplastic deformation can be correlated with the development of stress concentrations at irregularities along grain boundaries such as particles, ledges and triple points. In commercial aluminium alloys Al-Fe-Si particles or other coarse constituents may play an important role in cavity formation.Cavity formation during superplastic deformation was studied by optical metallography and transmission scanning electron microscopic investigations on Al-Mg-Si and Al-Mg-Mn alloys. The structure of particles was characterized by selected area diffraction and X-ray micro analysis. The volume fraction of “voids” was determined on mechanically polished surface.It was found by electron microscopy that strongly deformed regions are formed during superplastic forming at grain boundaries and around coarse particles.According to electron diffraction measurements these areas consist of small micro crystallized regions. See Fig.l.Comparing the volume fraction and morphology of cavities found by optical microscopy a good correlation was established between that of micro crystalline regions.


2001 ◽  
Vol 12 (1) ◽  
pp. 8-14
Author(s):  
Gertraud Teuchert-Noodt ◽  
Ralf R. Dawirs

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.


Sign in / Sign up

Export Citation Format

Share Document