structural entropy
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 35)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Vol 59 (2) ◽  
pp. 102862
Author(s):  
Haiyun Xu ◽  
Rui Luo ◽  
Jos Winnink ◽  
Chao Wang ◽  
Ehsan Elahi
Keyword(s):  

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 81
Author(s):  
Jie Han ◽  
Tao Guo ◽  
Qiaoqiao Zhou ◽  
Wei Han ◽  
Bo Bai ◽  
...  

With the rapid expansion of graphs and networks and the growing magnitude of data from all areas of science, effective treatment and compression schemes of context-dependent data is extremely desirable. A particularly interesting direction is to compress the data while keeping the “structural information” only and ignoring the concrete labelings. Under this direction, Choi and Szpankowski introduced the structures (unlabeled graphs) which allowed them to compute the structural entropy of the Erdos–Rényi random graph model. Moreover, they also provided an asymptotically optimal compression algorithm that (asymptotically) achieves this entropy limit and runs in expectation in linear time. In this paper, we consider the stochastic block models with an arbitrary number of parts. Indeed, we define a partitioned structural entropy for stochastic block models, which generalizes the structural entropy for unlabeled graphs and encodes the partition information as well. We then compute the partitioned structural entropy of the stochastic block models, and provide a compression scheme that asymptotically achieves this entropy limit.


2021 ◽  
Author(s):  
Xuepei Zhang ◽  
Zhaowei Meng ◽  
Christian Beusch ◽  
Hassan Gharibi ◽  
Qing Cheng ◽  
...  

Abstract Inorganic materials depleted of heavy stable isotopes are known to deviate strongly in some physico-chemical properties from their isotopically natural (native) counterparts; however, in biotechnology such effects have not been investigated yet. Here we explored for the first time the effect of simultaneous depletion of the heavy carbon, hydrogen, oxygen and nitrogen isotopes on the bacterium E. coli and the enzymes expressed in it. Bacteria showed faster growth, with proteins exhibiting higher thermal stability, while for recombinant enzymes expressed in ultralight media, faster kinetics was discovered. At room temperature, luciferase, thioredoxin and dihydrofolate reductase showed a 40-250% increase in activity compared to the native counterparts. The efficiency of ultralight Pfu DNA polymerase in polymerase chain reaction was also significantly higher than that of the normal enzyme. At 10 °C, the advantage factor of ultralight enzymes typically increased by 50%, which points towards the reduction in structural entropy as the main factor explaining the kinetic effect of heavy isotope depletion. Ultralight enzymes may find an application where extreme reaction rates are required.


2021 ◽  
Vol 104 (18) ◽  
Author(s):  
M. Prado ◽  
F. Sgrignuoli ◽  
Y. Chen ◽  
L. Dal Negro ◽  
F. A. Pinheiro

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1173
Author(s):  
Kaichun Yang ◽  
Chunxin Yang ◽  
Han Yang ◽  
Chenglong Zhou

During manned space missions, an environmental control and life-support system (ECLSS) is employed to meet the life-supporting requirements of astronauts. The ECLSS is a type of hierarchical system, with subsystem—component—single machines, forming a complex structure. Therefore, system-level conceptual designing and performance evaluation of the ECLSS must be conducted. This study reports the top-level scheme of ECLSS, including the subsystems of atmosphere revitalization, water management, and waste management. We propose two schemes based on the design criteria of improving closure and reducing power consumption. In this study, we use the structural entropy method (SEM) to calculate the system order degree to quantitatively evaluate the ECLSS complexity at the top level. The complexity of the system evaluated by directed SEM and undirected SEM presents different rules. The results show that the change in the system structure caused by the replacement of some single technologies will not have great impact on the overall system complexity. The top-level scheme design and complexity evaluation presented in this study may provide technical support for the development of ECLSS in future manned spaceflights.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 936
Author(s):  
Brigita Sziová ◽  
Szilvia Nagy ◽  
Zoltán Fazekas

For finding colorectal polyps the standard method relies on the techniques and devices of colonoscopy and the medical expertise of the gastroenterologist. In case of images acquired through colonoscopes the automatic segmentation of the polyps from their environment (i.e., from the bowel wall) is an essential task within computer aided diagnosis system development. As the number of the publicly available polyp images in various databases is still rather limited, it is important to develop metaheuristic methods, such as fuzzy inference methods, along with the deep learning algorithms to improve and validate detection and classification techniques. In the present manuscript firstly a fuzzy rule set is generated and validated. The former process is based on a statistical approach and makes use of histograms of the antecedents. Secondly, a method for selecting relevant antecedent variables is presented. The selection is based on the comparision of the histograms computed from the measured values for the training set. Then the inclusion of the Rényi-entropy-based structural entropy and the spatial filling factor into the set of input variables is proposed and assessed. The beneficial effect of including the mentioned structural entropy of the entropies from the hue and saturation (H and S) colour channels resulted in 65% true positive and 60% true negative rate of the classification for an advantageously selected set of antecedents when working with HSV images.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xin Kang ◽  
Xiangjun Xu ◽  
Fei Yuan

To evaluate the investment decisions of new energy vehicle enterprises scientifically and reasonably and improve the investment efficiency and accuracy of decision-makers, this paper proposes an investment decision method based on interval intuitionistic fuzzy sets. In the investment decision-making process of new energy vehicle enterprises, first, based on the characteristics of new energy vehicle enterprise investment projects, an index system is constructed to comprehensively cover the influencing factors of investment decisions. Second, we obtain the interval fuzzy number of the decision index through a questionnaire survey, use the structural entropy method to empower decision indicators, and comprehensively evaluate the decision index by the organic combination of the interval-valued intuitionistic fuzzy weighted averaging (IIFWA) operator and structural entropy method. Finally, interval BPA is used to express the value of each decision index interval intuitionistic fuzzy number. Based on the conversion relationship between interval evidence and the intuitionistic fuzzy set, the orthogonal sum operation results of the intuitionistic fuzzy set converted from the normalized interval BPA is replaced by the interval evidence combination result, and the final decision is determined by comparing the fusion result. Applying the investment decision method based on interval intuitionistic fuzzy sets to the field of new energy vehicle investment decision-making can provide a reference for investment decision-makers to make efficient and accurate decisions, and it has application value and practical significance to promote the effective development of new energy investment decisions.


2021 ◽  
Vol 11 (9) ◽  
pp. 4139
Author(s):  
Grigory Yakovlev ◽  
Irina Polyanskikh ◽  
V. Belykh ◽  
Vladimir Stepanov ◽  
Olga Smirnova

The need for research using modern methods of physical and chemical analysis in combination with methods for processing the graphical results arises with an increase of developments aimed at changing the structure and properties of hydration-hardening materials. Currently, the method of scanning electron microscopy is widely used for the qualitative and quantitative analysis of materials. Additional information, including fractal analysis of the image, determines the information-entropy levels and the state of the information system in the form of the microstructure based on the generalized structural entropy that increases the volume and quality of analytical information extracted from the obtained images. Images with a magnification of 20,000 times were used to analyze the microstructure of a control cement composite and a carbon black modified composite. The fractal analysis of the images revealed a change in the relative organization of the system, which justifiedthe nature of the change in the physical and technical properties of the modified cement composite relative to the additive-free cement composite from the perspective of self-organization.


Sign in / Sign up

Export Citation Format

Share Document