Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres

2000 ◽  
Vol 60 (16) ◽  
pp. 2967-2977 ◽  
Author(s):  
G. Kalaprasad ◽  
P. Pradeep ◽  
George Mathew ◽  
C. Pavithran ◽  
Sabu Thomas
2017 ◽  
Vol 25 (6) ◽  
pp. 447-452
Author(s):  
James K. Carson ◽  
Mohamed Alsowailem

The thermal diffusivities of copper/linear-low-density polyethylene (Cu/LLDPE) composites were measured relative to the thermal diffusivity of pure LLDPE. The relative thermal diffusivities were similar to those obtained for copper/high-density polyethylene composites, but were noticeably different from estimated values derived from thermal conductivity, density and specific heat capacity data for Cu/LLDPE from the literature. The thermal diffusivity of the composite material initially decreased below that of the pure polymer with the addition of a small amount of copper, before increasing above it as more was added. There would appear to be marginal or no benefit from adding less than about 15 to 20% metal by volume to a polymer, since the relative increase in thermal diffusivity only becomes significant for greater volumes.


2011 ◽  
Vol 18 (6) ◽  
pp. 2275-2284 ◽  
Author(s):  
Muhammad J. Khan ◽  
Abdulhadi A. Al-Juhani ◽  
Reyad Shawabkeh ◽  
Anwar Ul-Hamid ◽  
Ibnelwaleed A. Hussein

2011 ◽  
Vol 122 (4) ◽  
pp. 2486-2496 ◽  
Author(s):  
Muhammad J. Khan ◽  
Abdulhadi A. Al-Juhani ◽  
Anwar Ul-Hamid ◽  
Reyad Shawabkeh ◽  
Ibnelwaleed A. Hussein

2020 ◽  
Vol 15 (3) ◽  
pp. 44-49
Author(s):  
Ibiyemi A. Idowu ◽  
Olutosin O. Ilori

The study examined the effect of fillers on the mechanical properties of the recycled low density polyethylene composites under weathered condition with a view of managing the generation and disposal of plastic wastes. Discarded pure water sachets and fillers (glass and talc) were sourced and recycled. Recycled low density polyethylene (RLDPE) and preparation of RLDPE/glass, RLDPE/talc and RLDPE/glass/talc composites were carried out using a furnace at compositions of 0 – 40% in steps of 10% by weight. The mixtures were poured into hand-laid mould. The samples produced were exposed to sunlight for eight (8) weeks and their mechanical properties were studied. The results of mechanical tests revealed that tensile strength decreased with increasing filler loading while impact strength and hardness property increased marginally and considerably with increasing filler loading for all the composites respectively. The study concluded that glass and talc were able to reinforce recycled low density polyethylene under weathered condition. Keywords: Recycled Low Density Polyethylene (RLDPE); Fillers; Glass, Talc; Weathering condition; Sunlight; and Mechanical properties; Tensile strength, Impact and hardness


2019 ◽  
Vol 28 (4) ◽  
pp. 745-754 ◽  
Author(s):  
Hasanzadeh Rezgar ◽  
Azdast Taher ◽  
Doniavi Ali ◽  
Eungkee Lee Richard

Sign in / Sign up

Export Citation Format

Share Document