Rate-related fatigue injury of vertebral disc under axial cyclic loading in a porcine body-disc-body unit

1998 ◽  
Vol 13 (1) ◽  
pp. S32-S39 ◽  
Author(s):  
K-H Tsai ◽  
R-M Lin ◽  
G-L Chang
2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


2000 ◽  
Vol 183-187 ◽  
pp. 945-950 ◽  
Author(s):  
Chong Soo Lee ◽  
W. Hwang ◽  
Hyun Chul Park ◽  
Kyung Seop Han

2018 ◽  
Vol 55 (11) ◽  
pp. 1577-1591 ◽  
Author(s):  
R.M. Buckley ◽  
R.J. Jardine ◽  
S. Kontoe ◽  
B.M. Lehane

This paper reports experiments with 102 mm diameter closed-ended instrumented Imperial College piles (ICPs) jacked into low- to medium-density chalk at a well-characterized UK test site. The “ICP” instruments allowed the effective stress regime surrounding the pile shaft to be tracked during pile installation, equalization periods of up to 2.5 months, and load testing under static tension and one-way axial cyclic loading. Installation resistances are shown to be dominated by the pile tip loads. Low installation shaft stresses and radial effective stresses were measured that correlated with local cone penetration test (CPT) tip resistances. Marked shaft total stress reductions and steep stress gradients are demonstrated in the vicinity of the pile tip. The local interface shaft effective stress paths developed during static and cyclic loading displayed trends that resemble those seen in comparable tests in sands. Shaft failure followed the Coulomb law and constrained interface dilation was apparent as the pile experienced drained loading to failure, although with a lesser degree of radial expansion than with sands. Radial effective stresses were also found to fall with time after installation, leading to reductions in shaft capacity as proven by subsequent static tension testing. The jacked, closed-ended, piles’ ageing trends contrast sharply with those found with open piles driven at the same site, indicating that ageing is affected by pile tip geometry and (or) installation method.


2017 ◽  
Vol 12 (4) ◽  
pp. 611-626 ◽  
Author(s):  
Benjiao Zhang ◽  
Can Mei ◽  
Bin Huang ◽  
Xudong Fu ◽  
Gang Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document