scholarly journals Fatigue strength and fatigue fracture process of high tension bolts of boron steel tested under axial cyclic loading.

1987 ◽  
Vol 36 (408) ◽  
pp. 980-985
Author(s):  
Hideto SUZUKI ◽  
Masaru OUYABU ◽  
Takeshi KUNIO
2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


2000 ◽  
Vol 183-187 ◽  
pp. 945-950 ◽  
Author(s):  
Chong Soo Lee ◽  
W. Hwang ◽  
Hyun Chul Park ◽  
Kyung Seop Han

2018 ◽  
Vol 55 (11) ◽  
pp. 1577-1591 ◽  
Author(s):  
R.M. Buckley ◽  
R.J. Jardine ◽  
S. Kontoe ◽  
B.M. Lehane

This paper reports experiments with 102 mm diameter closed-ended instrumented Imperial College piles (ICPs) jacked into low- to medium-density chalk at a well-characterized UK test site. The “ICP” instruments allowed the effective stress regime surrounding the pile shaft to be tracked during pile installation, equalization periods of up to 2.5 months, and load testing under static tension and one-way axial cyclic loading. Installation resistances are shown to be dominated by the pile tip loads. Low installation shaft stresses and radial effective stresses were measured that correlated with local cone penetration test (CPT) tip resistances. Marked shaft total stress reductions and steep stress gradients are demonstrated in the vicinity of the pile tip. The local interface shaft effective stress paths developed during static and cyclic loading displayed trends that resemble those seen in comparable tests in sands. Shaft failure followed the Coulomb law and constrained interface dilation was apparent as the pile experienced drained loading to failure, although with a lesser degree of radial expansion than with sands. Radial effective stresses were also found to fall with time after installation, leading to reductions in shaft capacity as proven by subsequent static tension testing. The jacked, closed-ended, piles’ ageing trends contrast sharply with those found with open piles driven at the same site, indicating that ageing is affected by pile tip geometry and (or) installation method.


2015 ◽  
Vol 15 (3) ◽  
pp. 33-40
Author(s):  
T. Lipiński ◽  
A. Wach ◽  
E. Detyna

Abstract The article discusses the effect of large oxide impurities (a diameter larger than 10 μm in size) on the fatigue resistance of structural steel of high purity during rotary bending. The study was performed on 7 heats produced in an industrial plant. The heats were produced in 140 ton electric furnaces. All heats were desulfurized. The experimental material consisted of semi-finished products of high-grade, carbon structural steel with: manganese, chromium, nickel, molybdenum and boron. Steel sections with a diameter of 18 mm were hardened from austenitizing by 30 minutes in temperature 880°C and tempered at a temperature of 200, 300, 400, 500 and 600°C for 120 minutes and air-cooled. The experimental variants were compared in view of the heat treatment options. Fatigue tests were performed with the use of a rotary bending machine at a frequency of 6000 cpm. The results were statistical processed and presented in graphic form. This paper discusses the results of the relative volume of large impurities, the fatigue strength for various heat processing options.


Author(s):  
I. S. Kamantsev ◽  
◽  
Yu. N. Loginov ◽  
S. V. Belikov ◽  
S. I. Stepanov ◽  
...  

An example of samples with a cellular architecture, obtained by selective laser melting, is used to study the influence of the building direction of cellular objects on the characteristics of fracture under cyclic loading. The origin of their fracture has been revealed. The mechanism providing increased fatigue fracture resistance of objects which, along with the cellular structure, have anisotropy of properties due to the technological features of their production has been determined.


2018 ◽  
Vol 165 ◽  
pp. 06001 ◽  
Author(s):  
André Reck ◽  
Stefan Pilz ◽  
Ulrich Thormann ◽  
Volker Alt ◽  
Annett Gebert ◽  
...  

This study examined the fatigue properties of a newly developed cast and thermomechanical processed (β)-Ti-40Nb alloy for a possible application as biomedical alloy due to exceptional low Young’s modulus (64-73 GPa), high corrosion resistance and ductility (20-26%). Focusing on the influence of two microstructural states with fully recrystallized β-grain structure as well as an aged condition with nanometer-sized ω-precipitates, tension-compression fatigue tests (R=-1) were carried out under lab-air and showed significant differences depending on the β-phase stability under cyclic loading. Present ω- precipitates stabilized the β-phase against martensitic α’’ phase transformations leading to an increased fatigue limit of 288 MPa compared to the recrystallized state (225 MPa), where mechanical polishing and subsequent cyclic loading led to formation of α’’-phase due to the metastability of the β-phase. Additional studied commercially available (β)-Ti-45Nb alloy revealed slightly higher fatigue strength (300 MPa) and suggest a change in the dominating cyclic deformation mechanisms according to the sensitive dependence on the Nb-content. Further tests in simulated body fluid (SBF) at 37°C showed no decrease in fatigue strength due to the effect of corrosion and prove the excellent corrosion fatigue resistance of this alloy type under given test conditions.


Sign in / Sign up

Export Citation Format

Share Document