Age, Genetics Affect PD Risk in Pesticide Exposure

2009 ◽  
Vol 37 (7) ◽  
pp. 21
Author(s):  
JEFF EVANS
Keyword(s):  
Author(s):  
Amal Saad-Hussein ◽  
Mona Mohamed Taha

AbstractBackgroundEpigenetic represents a study of occurred heritable gene expression changes without changing in the DNA sequence. It includes DNA methylation and miRNA expression that attract increasing attention as potential links between the genetic and environmental determinants of health and disease. Pesticide exposure is associated with adverse health effects and DNA methylation due to oxidative stress induced following its exposure. This study aimed to define the association of genetic polymorphisms of XRCC1, PON1, GSTP1 and GST genes with global genes DNA methylation in urban and rural occupationally pesticides exposed workers.MethodsThis study included 100 pesticides exposed workers; 50 rural sprayers (RE) and 50 urban researchers (UE). Controls included equal numbers. DNA methylation of global genes was evaluated by pyrosequencing assay. XRCC1, PON1 and GSTP1 genotyping were assessed by PCR–RFLP, and GST M1 and T1 were performed by PCR.ResultsThe results of this study revealed that most genotypes in XRCC1, PON1, GSTP1 and GST genes were associated with LINE-1 hypomethylation among UE group. However, heterozygote genotypes (Gln-Arg and Ile-Val) in XRCC1 and GSTP1 genes, respectively, were associated with LINE-1 hypermethylation among UE compared with other corresponding genotypes. Only GSTT1 polymorphism recorded a significant change in percent methylation of Alu elements among urban and rural groups.ConclusionUrbanization could play an additional risk for epigenetic changes associated with pesticide exposure, and that could be attributed to the quality of life including their dietary habits, working and living in closed areas, and their exposure to extra pollutions emitted from urbanization sources.


Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 97
Author(s):  
Tristan Furnary ◽  
Rolando Garcia-Milian ◽  
Zeyan Liew ◽  
Shannon Whirledge ◽  
Vasilis Vasiliou

Recent epidemiological studies suggest that prenatal exposure to acetaminophen (APAP) is associated with increased risk of Autism Spectrum Disorder (ASD), a neurodevelopmental disorder affecting 1 in 59 children in the US. Maternal and prenatal exposure to pesticides from food and environmental sources have also been implicated to affect fetal neurodevelopment. However, the underlying mechanisms for ASD are so far unknown, likely with complex and multifactorial etiology. The aim of this study was to explore the potential effects of APAP and pesticide exposure on development with regards to the etiology of ASD by highlighting common genes and biological pathways. Genes associated with APAP, pesticides, and ASD through human research were retrieved from molecular and biomedical literature databases. The interaction network of overlapping genetic associations was subjected to network topology analysis and functional annotation of the resulting clusters. These genes were over-represented in pathways and biological processes (FDR p < 0.05) related to apoptosis, metabolism of reactive oxygen species (ROS), and carbohydrate metabolism. Since these three biological processes are frequently implicated in ASD, our findings support the hypothesis that cell death processes and specific metabolic pathways, both of which appear to be targeted by APAP and pesticide exposure, may be involved in the etiology of ASD. This novel exposures-gene-disease database mining might inspire future work on understanding the biological underpinnings of various ASD risk factors.


Author(s):  
Saliha Çelik ◽  
Muhsin Akbaba ◽  
Ersin Nazlıcan ◽  
İsmail Ethem Gören ◽  
Evsen Yavuz Güzel ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William G. Meikle ◽  
John J. Adamczyk ◽  
Milagra Weiss ◽  
Janie Ross ◽  
Chris Werle ◽  
...  

AbstractThe effects of agricultural pesticide exposure upon honey bee colonies is of increasing interest to beekeepers and researchers, and the impact of neonicotinoid pesticides in particular has come under intense scrutiny. To explore potential colony-level effects of a neonicotinoid pesticide at field-relevant concentrations, honey bee colonies were fed 5- and 20-ppb concentrations of clothianidin in sugar syrup while control colonies were fed unadulterated syrup. Two experiments were conducted in successive years at the same site in southern Arizona, and one in the high rainfall environment of Mississippi. Across all three experiments, adult bee masses were about 21% lower among colonies fed 20-ppb clothianidin than the untreated control group, but no effects of treatment on brood production were observed. Average daily hive weight losses per day in the 5-ppb clothianidin colonies were about 39% lower post-treatment than in the 20-ppb clothianidin colonies, indicating lower consumption and/or better foraging, but the dry weights of newly-emerged adult bees were on average 6–7% lower in the 5-ppb group compared to the other groups, suggesting a nutritional problem in the 5-ppb group. Internal hive CO2 concentration was higher on average in colonies fed 20-ppb clothianidin, which could have resulted from greater CO2 production and/or reduced ventilating activity. Hive temperature average and daily variability were not affected by clothianidin exposure but did differ significantly among trials. Clothianidin was found to be, like imidacloprid, highly stable in honey in the hive environment over several months.


Sign in / Sign up

Export Citation Format

Share Document