A study of optimum load-bearing capacity for slider bearings lubricated with couple stress fluids in magnetic field

1998 ◽  
Vol 31 (7) ◽  
pp. 393-400 ◽  
Author(s):  
N.C. Das
2019 ◽  
Vol 286 ◽  
pp. 07002
Author(s):  
M. Mouda ◽  
M. Nabhani ◽  
M. El Khlifi

This paper presents a numerical investigation of lubricating slider bearings with conducting couple stress fluids using externally applied magnetics fields. The modified two-dimensional magnetohydrodynamic couple stress Reynolds-type equation is obtained. This governing equation is resolved numerically by using finite difference scheme, which involves the Gauss–Seidel method to compute the bearing characteristics. Numerical results using different considered values of the couple stress and Hartman number are presented. These results demonstrate that the transverse magnetic field and couple stress effects are significant.


2020 ◽  
Vol 60 (3) ◽  
pp. 259-267
Author(s):  
Yoginibahen Devendrasinh Vashi ◽  
Rakesh Manilal Patel ◽  
Gunamani Biswanath Deheri

This study intents to scrutinize the impact of ferrofluid in the presence of couple stress for longitudinally rough porous circular stepped plates. The influence of longitudinal surface roughness is developed using the stochastic model of Christensen and Tonder for nonzero mean, variance and skewness. Neuringer-Roseinweig model is adopted for the influence of ferrofluid. The couple stress effect is characterized by Stoke’s micro continuum theory. The modified Reynolds’ type equation is stochastically averaged and solved by no-slip boundary conditions. The closed form solutions for load bearing capacity and film pressure are obtained as a function of different parameters and plotted graphically. It is perceived that the load capacity gets elevated owing to the combined influence of magnetization and couple stress when the proper choice of roughness parameters (negatively skewed, standard deviation) is in place. Porosity and roughness (positively skewed) adversely affect bearing’s performance. The graphical and tabular analysis shows that there is a significant growth in load bearing capacity compared to the conventional lubricant case.


2018 ◽  
Vol 70 (6) ◽  
pp. 1086-1093 ◽  
Author(s):  
V.S. Madalli ◽  
Siddharama Patil ◽  
Ayyappa Hiremath ◽  
Ramesh Kudenatti

Purpose This paper aims to present a detailed analysis to explore the various properties of non-Newtonian couple stress lubricants between parallel porous plates. Design/methodology/approach With reference to the theories based on micro-continuum analysis, a non-linear, non-Newtonian Reynolds type equation is arrived. The closed form solutions obtained clearly indicate the changes in pressure, load bearing capacity and response time because of variation in viscosity of couple stress fluid. Findings It is observed that the viscosity variation factor greatly influences the change in pressure, load carrying capacity and squeezing time. Originality/value It is observed that the nature of lubricants with suitable additives greatly helps in overcoming the adverse effect because of porous surface. Reynolds type equation is analysed using appropriate boundary conditions. The expression for pressure distribution arrived at in turn leads to the analysis of load bearing capacity and response time.


2020 ◽  
Vol 62 (1) ◽  
pp. 55-60
Author(s):  
Per Heyser ◽  
Vadim Sartisson ◽  
Gerson Meschut ◽  
Marcel Droß ◽  
Klaus Dröder

2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


Sign in / Sign up

Export Citation Format

Share Document