Trace element systematics of ultramafic and mafic volcanic rocks from the 3Ga North Caribou greenstone belt, northwestern Superior Province

1999 ◽  
Vol 93 (4) ◽  
pp. 257-279 ◽  
Author(s):  
P Hollings
1980 ◽  
Vol 17 (5) ◽  
pp. 560-568 ◽  
Author(s):  
G. S. Clark ◽  
S.-P. Cheung

Rb–Sr whole-rock ages have been determined for rocks from the Oxford Lake – Knee Lake – Gods Lake greenstone belt, in the Superior Province of northeastern Manitoba.The age of the Magill Lake Pluton is 2455 ± 35 Ma (λ87Rb = 1.42 × 10−11 yr−1), with an initial 87Sr/86Sr ratio of 0.7078 ± 0.0043. This granitic stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism.The age of the Bayly Lake Pluton is 2424 ± 74 Ma, with an initial 87Sr/86Sr ratio of 0.7029 ± 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed.The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 ± 125 Ma, with an initial 87Sr/86Sr ratio of 0.7014 ± 0.0009.The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granitic intrusion in the area.The age for the Hayes River Group volcanic rocks is consistent with Rb–Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province.


2015 ◽  
Vol 52 (3) ◽  
pp. 196-214 ◽  
Author(s):  
Robert W.D. Lodge ◽  
Harold L. Gibson ◽  
Greg M. Stott ◽  
James M. Franklin ◽  
George J. Hudak

The greenstone belts along the northern margin of the Wawa subprovince of the Superior Province (Vermilion, Shebandowan, Winston Lake, Manitouwadge) formed at ca. 2720 Ma and have been interpreted to be representative of a rifted-arc to back-arc tectonic setting. Despite a common inferred tectonic setting and broad similarities, these greenstone belts have a significantly different metallogeny as evidenced by different endowments in volcanogenic massive sulphide (VMS), magmatic sulphide, and orogenic gold deposits. In this paper, we examine differences in geodynamic setting and crustal architecture as they pertain to the metallogeny of each greenstone belt by characterizing the regional-scale trace-element and isotopic (Nd and Pb) geochemistry of each belt. The trace-element geochemistry of the Vermilion greenstone belt (VGB) shows evidence for a transition from arc-like to back-arc mafic rocks in the Soudan belt to plume-driven rifted arcs in the ultramafic-bearing Newton belt. The Shebandowan greenstone belt (SGB) has a significant proportion of calc-alkalic, arc-like basalts, intermediate lithofacies, and high-Mg andesites, which are characteristic of low-angle, “hot” subduction. Extensional settings within the SGB are plume-driven and associated with komatiitic ultramafic and mid-ocean ridge basalt (MORB)-like basalts. The Winston Lake greenstone belt (WGB) is characterized by a transition from calc-alkalic, arc-like basalts to back-arc basalts upward in the strata and is capped by alkalic ocean-island basalt (OIB)-like basalts. This association is consistent with plume-driven rifting of a mature arc setting. Each of the VGB, SGB, and WGB show some isotopic evidence for the interaction with a juvenile or slightly older differentiated crust. The Manitouwadge greenstone belt (MGB) is characterized by isotopically juvenile, bimodal, tholeiitic to transitional volcanic lithofacies in a back-arc setting. The MGB is the most isotopically juvenile belt and is also the most productive in terms of VMS mineralization. The Zn-rich VMS mineralization within the WGB suggests a relatively lower-temperature hydrothermal system, possibly within a relatively shallow-water environment. The Zn-dominated and locally Au-enriched VMS mineralization, as well as mafic lithofacies and alteration assemblages, are characteristic of relatively shallower-water deposition in the VGB and SGB, and indicate that the ideal VMS-forming tectonic condition may have been compromised by a shallower-water depositional setting. However, the thickened arc crust and compressional tectonics of the SGB suprasubduction zone during hot subduction may have provided a crustal setting more favourable for the magmatic Ni–Cu sulphide and relative gold endowment of this belt.


1990 ◽  
Vol 27 (5) ◽  
pp. 649-656 ◽  
Author(s):  
A. Turek ◽  
R. Keller ◽  
W. R. Van Schmus

The Mishibishu greenstone belt, located 40 km west of Wawa, is a typical Archean greenstone belt and is probably an extension of the Michipicoten belt. This belt is composed of basic to felsic metavolcanic rocks of tholeiitic to calc-alkaline affinity and of metasedimentary rocks ranging from conglomerate to argillite. Granitoids, diorites, and gabbros intrude and embay supracrustal rocks as internal and external plutons.Six U–Pb zircon ages have been obtained on rocks in this area. The oldest is 2721 ± 4 Ma for the Jostle Lake tonalite. The bulk of the volcanic rocks formed by 2696 ± 17 Ma, which is the age of the Chimney Point porphyry at the top of the volcanic pile. The Pilot Harbour granite has a similar age of 2693 ± 7 Ma. The age of the Tee Lake tonalite is 2673 ± 12 Ma, and the age of the Iron. Lake gabbro is 2671 ± 4 Ma. The youngest age for volcanics in this part of the Superior Province is 2677 ± 7 Ma, obtained from, the David Lakes pyroclastic breccia. these ages agree with those reported for the adjacent Michipicoten and Gamitagama belts.


1988 ◽  
Vol 25 (5) ◽  
pp. 691-700 ◽  
Author(s):  
Karen St. Seymour ◽  
Don Francis

The Lac Guyer greenstone belt was one of a series of volcanic troughs active during the Archean in the James Bay territory of the Superior Province of Quebec. The belt consists of a succession of isoclinally folded volcanic rocks comprising a lower sequence of basalts overlain by felsic tuffs and rhyodacites that are in turn succeeded by an upper sequence of basalt and komatiite. Plutons of granodioritic composition syntectonically intrude the volcanic succession. The development of this volcanic succession can be interpreted in terms of a model involving an intimate interaction between a differentiated crust and Mg-rich magmas rising from the mantle. Although some of these magmas reached the surface to erupt as komatiites, the majority were trapped at the base of the crust and fractionated towards basaltic compositions. This process caused partial melting of the base of the crust, which was probably mafic in composition, and produced granodioritic magmas whose derivative liquids erupted as rhyodacites.


1994 ◽  
Vol 31 (7) ◽  
pp. 1256-1286 ◽  
Author(s):  
John A. Percival ◽  
Gordon F. West

Over the past decade, the Kapuskasing uplift has been the subject of intense geological and geophysical investigation as Lithoprobe's window on the deep-crustal structure of the Archean Superior Province. Enigmatic since its recognition as a positive gravity anomaly in 1950, the structure has been variably interpreted as a suture, rift, transcurrent shear zone, or intracratonic thrust. Diverse studies, including geochronology, geothermobarometry, and various geophysical probes, provide a comprehensive three-dimensional image of Archean (2.75–2.50 Ga) crustal evolution and Proterozoic (2.5–1.1 Ga) cooling and uplift. The data favour an interpretation of the structure as an intracratonic uplift related to Hudsonian collision.Eastward across the southern Kapuskasing uplift, erosion levels increase from < 10 km in the Michipicoten greenstone belt, through the Wawa gneiss domain (10–20 km), into granulites (20–30 km) of the Kapuskasing structural zone, juxtaposed against the low-grade Swayze greenstone belt along the Ivanhoe Lake fault zone. Most volcanic rocks in the greenstone belts erupted in the interval 2750–2700 Ma and were thrust, folded, and cut by late plutons and transcurrent faults before 2670 Ma. Wawa gneisses include major 2750–2660 and minor 2920 Ma tonalitic components, deformed in several events including prominent late subhorizontal extensional shear zones prior to 2645 Ma. Supracrustal rocks of the Kapuskasing zone have model Nd ages of 2750–2700 Ma, metamorphic zircon ages of 2696–2584 Ma, and titanite ages of 2600–2493 Ma, reflecting deposition, intrusion, complex deformation, recrystallization, and cooling during prolonged deep-crustal residence. Postorogenic unroofing rapidly cooled shallow (10–20 km) parts of the Superior Province, but metamorphism and local deformation continued in the ductile deep crust, overlapping the time of late gold deposition in shear zones in the shallow brittle regime.Elevation of granulites, expressed geophysically as positive gravity anomalies and a west-dipping zone of high refraction velocities, dates from a major episode of transpressive faulting. Analysis of deformation effects in Matachewan (2454 Ma), Biscotasing (2167 Ma), and Kapuskasing (2040 Ma) dykes, as well as the brittle nature of fault rocks and cooling patterns of granulites, constrains the time of uplift to ca, 1.9 Ga. Approximately 27 km of shortening was accommodated through brittle upper crustal thrusting and ductile growth of an 8 km thick root in the lower crust that has been maintained by relatively cool, strong mantle lithosphere. The present configuration of the uplift results from overall dextral displacement in which the block was broken and deformed by dextral, normal, and sinistral faults, and modified by later isostatic adjustment. Seismic reflection profiles display prominent northwest-dipping reflectors believed to image lithological contacts and ductile strain zones of Archean age; the indistinct reflection character of the Ivanhoe Lake fault is probably related to its brittle nature formed through brecciation and cataclasis at temperatures < 300 °C. The style and orientation of Proterozoic structures may have been influenced by the Archean crustal configuration.


2006 ◽  
Vol 43 (7) ◽  
pp. 929-945 ◽  
Author(s):  
C Sasseville ◽  
K Y Tomlinson ◽  
A Hynes ◽  
V McNicoll

In western Superior province, the North Caribou terrane (NCT) constitutes a Mesoarchean proto-continent heavily overprinted by Neoarchean magmatism and deformation resulting from the western Superior Province accretion. Locally, along the southern margin of the NCT, Mesoarchean (~3.0 Ga) rift sequences are preserved. These sequences are of key importance to our understanding of the early tectonic evolution of continental crust. The Wallace Lake greenstone belt is located at the southern margin of the NCT and includes the Wallace Lake assemblage, the Big Island assemblage, the Siderock Lake assemblage, and the French Man Bay assemblage. The Wallace Lake assemblage exposes one of the best-preserved Mesoarchean rift sequences along the southern margin of the NCT. The volcano-sedimentary assemblage (3.0–2.92 Ga) exposes arkoses derived from the uplift of a tonalite basement in a subaqueous environment, capped by carbonate and iron formation. Mafic to ultramafic volcanic rocks exhibiting crustal contamination and derived from plume magmatism cap this rift sequence. The Wallace Lake assemblage exhibits D1 Mesoarchean deformation. The Big Island assemblage comprises mafic volcanic rocks of oceanic affinity that were docked to the Wallace Lake assemblage along northwest-trending D2 shear zones. The timing of volcanism and docking of the Big Island assemblage remain uncertain. The Siderock Lake and French Man Bay assemblages were deposited in strike-slip basins related to D3 and D4 stages of movement of the transcurrent Wanipigow fault (<2.709 Ga). Regionally, the Wallace Lake assemblage correlates with the Lewis–Story Rift assemblage observed in Lake Winnipeg, whereas the Big Island assemblage appears to correlate with the Black Island assemblage observed in the Lake Winnipeg area. Thus, the North Caribou terrane appears to preserve vestiges of a Mesoarchean rifted succession together with overlying Neoarchean allochthonous, juvenile, volcanic successions over a considerable distance along its present-day southern margin.


1986 ◽  
Vol 23 (8) ◽  
pp. 1075-1082 ◽  
Author(s):  
F. Corfu ◽  
G. M. Stott

Five precise U–Pb zircon (and titanite) ages from different lithologic units of the Shebandowan greenstone belt in the western Wawa Subprovince of the Superior Province put tight constraints on the time of late Archean magmatism and of two major deformation events.A porphyry sill from the older supracrustal sequence has an age of 2733 ± 3 Ma. Another porphyritic rock, a trondhjemite occurring as a clast in a conglomerate of the unconformably overlying Timiskaming-type supracrustal sequence, formed 2704 ± 2 Ma ago and defines a maximum age for the deposition of the Timiskaming-type sequence. An alkalic volcanic rock from this sequence has been directly dated at [Formula: see text], in accord with the above constraint and with another probable maximum age of deposition given by the date of 2696 ± 2 Ma for the Shebandowan Lake Pluton. A first deformation event (D1) was related to a predominantly vertical tectonic regime and occurred during or before intrusion of the Shebandowan Lake Pluton at 2696 ± 2 Ma. The second deformation event (D2) was caused by northwesterly-directed compression and occurred after [Formula: see text] ago, the age of the Timiskaming-type volcanic rocks. A minimum age for the D2 deformation event, which also affected the adjacent Quetico metasedimentary belt and was probably related to the development of major transcurrent fault systems throughout the Superior Province, is provided by an age of [Formula: see text] for the undeformed, late-kinematic Burchell Lake Pluton.


2006 ◽  
Vol 43 (7) ◽  
pp. 821-847 ◽  
Author(s):  
M D Young ◽  
V McNicoll ◽  
H Helmstaedt ◽  
T Skulski ◽  
J A Percival

New field work, U–Pb ages, geochemical data, and Sm–Nd isotopic analyses have established the timing and determined the nature of volcanism, deformation, and tectonic assembly of the Pickle Lake greenstone belt in the Uchi subprovince of the western Superior Province of the Canadian Shield. The >2860 Ma Pickle Crow assemblage has been redefined to include the former Northern Pickle assemblage on the basis of stratigraphic continuity and similar volcanic geochemistry between the two units across a previously inferred fault contact. The Pickle Crow assemblage consists of tholeiitic basalt with thin, but laterally extensive, oxide-facies iron formation overlain by alkalic basalts and minor calc-alkaline andesites to dacites with primitive Nd isotopic compositions (εNd2.89 Ga = +2.1 to +2.4) suggestive of deposition in a sediment-starved oceanic basin. The ~2 km thick ~2836 Ma Kaminiskag assemblage (former Woman assemblage) consists of tholeiitic basalt interbedded with intermediate and rare felsic pyroclastic flows with primitive Nd isotopic compositions (εNd2.836 Ga = +2.4). Two samples of intermediate volcanic rocks interbedded with southeast-younging pillowed basalt, previously inferred to be part of the Pickle Crow assemblage, yielded U–Pb zircon ages of 2744 [Formula: see text] Ma and 2729 ± 3 Ma. These rocks are thus part of the younger Confederation assemblage, which consists of intercalated basalt and dacite (εNd2.74 Ga = +0.1 to +0.8) exhibiting diverse compositions probably reflecting eruption in a continental margin arc to back-arc setting. The contact between the Confederation and Kaminiskag assemblages is assumed to be a fault. The greenstone belt is intruded by late syn- to posttectonic plutons including the composite quartz dioritic to gabbroic July Falls stock with a new U–Pb zircon age of 2749 [Formula: see text] Ma, and the ~2741 to 2740 Ma trondhjemitic to granodioritic Ochig Lake pluton and Pickle Lake stock, as well as the ~2697 to 2716 Ma Hooker–Burkoski stock. The earliest recognized deformation (D1) is recorded by a local bedding-parallel foliation in the Pickle Crow assemblage. This foliation is truncated by the ~2735 Ma Albany quartz–feldspar porphyry dyke and is not recognized in the volcanic rocks of the Confederation assemblage. The early deformation event is attributed to overturning of the Pickle Crow assemblage prior to deposition of the ~2744 to 2729 Ma Confederation assemblage. Subsequent deformation and development of a regionally penetrative planar fabric (S2) postdates ~2729 Ma volcanism, pre-dates the intrusion of the ca. <2716 Ma Hooker–Burkoski stock and is host to gold mineralization.


Sign in / Sign up

Export Citation Format

Share Document