Pickle Lake revisited: New structural, geochronological and geochemical constraints on greenstone belt assembly, western Superior Province, Canada

2006 ◽  
Vol 43 (7) ◽  
pp. 821-847 ◽  
Author(s):  
M D Young ◽  
V McNicoll ◽  
H Helmstaedt ◽  
T Skulski ◽  
J A Percival

New field work, U–Pb ages, geochemical data, and Sm–Nd isotopic analyses have established the timing and determined the nature of volcanism, deformation, and tectonic assembly of the Pickle Lake greenstone belt in the Uchi subprovince of the western Superior Province of the Canadian Shield. The >2860 Ma Pickle Crow assemblage has been redefined to include the former Northern Pickle assemblage on the basis of stratigraphic continuity and similar volcanic geochemistry between the two units across a previously inferred fault contact. The Pickle Crow assemblage consists of tholeiitic basalt with thin, but laterally extensive, oxide-facies iron formation overlain by alkalic basalts and minor calc-alkaline andesites to dacites with primitive Nd isotopic compositions (εNd2.89 Ga = +2.1 to +2.4) suggestive of deposition in a sediment-starved oceanic basin. The ~2 km thick ~2836 Ma Kaminiskag assemblage (former Woman assemblage) consists of tholeiitic basalt interbedded with intermediate and rare felsic pyroclastic flows with primitive Nd isotopic compositions (εNd2.836 Ga = +2.4). Two samples of intermediate volcanic rocks interbedded with southeast-younging pillowed basalt, previously inferred to be part of the Pickle Crow assemblage, yielded U–Pb zircon ages of 2744 [Formula: see text] Ma and 2729 ± 3 Ma. These rocks are thus part of the younger Confederation assemblage, which consists of intercalated basalt and dacite (εNd2.74 Ga = +0.1 to +0.8) exhibiting diverse compositions probably reflecting eruption in a continental margin arc to back-arc setting. The contact between the Confederation and Kaminiskag assemblages is assumed to be a fault. The greenstone belt is intruded by late syn- to posttectonic plutons including the composite quartz dioritic to gabbroic July Falls stock with a new U–Pb zircon age of 2749 [Formula: see text] Ma, and the ~2741 to 2740 Ma trondhjemitic to granodioritic Ochig Lake pluton and Pickle Lake stock, as well as the ~2697 to 2716 Ma Hooker–Burkoski stock. The earliest recognized deformation (D1) is recorded by a local bedding-parallel foliation in the Pickle Crow assemblage. This foliation is truncated by the ~2735 Ma Albany quartz–feldspar porphyry dyke and is not recognized in the volcanic rocks of the Confederation assemblage. The early deformation event is attributed to overturning of the Pickle Crow assemblage prior to deposition of the ~2744 to 2729 Ma Confederation assemblage. Subsequent deformation and development of a regionally penetrative planar fabric (S2) postdates ~2729 Ma volcanism, pre-dates the intrusion of the ca. <2716 Ma Hooker–Burkoski stock and is host to gold mineralization.

2006 ◽  
Vol 43 (7) ◽  
pp. 929-945 ◽  
Author(s):  
C Sasseville ◽  
K Y Tomlinson ◽  
A Hynes ◽  
V McNicoll

In western Superior province, the North Caribou terrane (NCT) constitutes a Mesoarchean proto-continent heavily overprinted by Neoarchean magmatism and deformation resulting from the western Superior Province accretion. Locally, along the southern margin of the NCT, Mesoarchean (~3.0 Ga) rift sequences are preserved. These sequences are of key importance to our understanding of the early tectonic evolution of continental crust. The Wallace Lake greenstone belt is located at the southern margin of the NCT and includes the Wallace Lake assemblage, the Big Island assemblage, the Siderock Lake assemblage, and the French Man Bay assemblage. The Wallace Lake assemblage exposes one of the best-preserved Mesoarchean rift sequences along the southern margin of the NCT. The volcano-sedimentary assemblage (3.0–2.92 Ga) exposes arkoses derived from the uplift of a tonalite basement in a subaqueous environment, capped by carbonate and iron formation. Mafic to ultramafic volcanic rocks exhibiting crustal contamination and derived from plume magmatism cap this rift sequence. The Wallace Lake assemblage exhibits D1 Mesoarchean deformation. The Big Island assemblage comprises mafic volcanic rocks of oceanic affinity that were docked to the Wallace Lake assemblage along northwest-trending D2 shear zones. The timing of volcanism and docking of the Big Island assemblage remain uncertain. The Siderock Lake and French Man Bay assemblages were deposited in strike-slip basins related to D3 and D4 stages of movement of the transcurrent Wanipigow fault (<2.709 Ga). Regionally, the Wallace Lake assemblage correlates with the Lewis–Story Rift assemblage observed in Lake Winnipeg, whereas the Big Island assemblage appears to correlate with the Black Island assemblage observed in the Lake Winnipeg area. Thus, the North Caribou terrane appears to preserve vestiges of a Mesoarchean rifted succession together with overlying Neoarchean allochthonous, juvenile, volcanic successions over a considerable distance along its present-day southern margin.


2000 ◽  
Vol 37 (7) ◽  
pp. 1021-1038 ◽  
Author(s):  
Pete Hollings ◽  
Greg Stott ◽  
Derek Wyman

Comprehensive trace element analyses of mafic and felsic volcanic rocks from the 2.85-2.74 Ga Meen-Dempster greenstone belt reveal a wide compositional diversity. The ~2.85 Ga Kaminiskag assemblage is dominated by mafic tholeiite characterized by predominantly unfractionated REE (La/Smn = 0.8-1.1). Rare intermediate and felsic pyroclastic flows (SiO2 = 62-74) with moderate to pronounced LREE enrichment are intercalated with the tholeiite. The Kaminiskag assemblage is overlain by the ~2825 Ma Meen assemblage, comprising dominantly dacitic tuffs and pyroclastic breccia, displaying enriched LREE (La/Smn = 3.7-7.2) and moderately fractionated HREE, in conjunction with pronounced negative Nb anomalies. Five distinct suites have been recognized in the ~2740 Ma Confederation assemblage: (1) tholeiitic basalt with flat to smoothly depleted REE, (2) tholeiite with flat to weakly depleted LREE in conjunction with pronounced negative Nb anomalies, (3) Fe-rich basalt with elevated Ti and P contents, LREE enrichment, and fractionated HREE, (4) LREE enriched basalt and andesite with negative Nb anomalies, and (5) dacite and rhyolite with enriched LREE, moderately fractionated HREE, and variable high field strength element anomalies. The geochemistry and geochronology of the Kaminiskag and Meen assemblages are consistent with the formation of an oceanic back arc (Kaminiskag assemblage), which formed the basement for a subduction-related arc complex (Meen assemblage) after a 15 Ma hiatus. The Confederation assemblage is interpreted to represent an Archean back arc, where the complex interplay of mantle sources allows for the eruption of tholeiite, subduction-modified tholeiite, ocean island basalt-like basalt, and subduction-related arc-type volcanic rocks. The recognition of back-arc basins within the Meen-Dempster greenstone belt emphasizes a continuity of crustal growth processes from the Archean to the present day.


1980 ◽  
Vol 17 (5) ◽  
pp. 560-568 ◽  
Author(s):  
G. S. Clark ◽  
S.-P. Cheung

Rb–Sr whole-rock ages have been determined for rocks from the Oxford Lake – Knee Lake – Gods Lake greenstone belt, in the Superior Province of northeastern Manitoba.The age of the Magill Lake Pluton is 2455 ± 35 Ma (λ87Rb = 1.42 × 10−11 yr−1), with an initial 87Sr/86Sr ratio of 0.7078 ± 0.0043. This granitic stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism.The age of the Bayly Lake Pluton is 2424 ± 74 Ma, with an initial 87Sr/86Sr ratio of 0.7029 ± 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed.The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 ± 125 Ma, with an initial 87Sr/86Sr ratio of 0.7014 ± 0.0009.The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granitic intrusion in the area.The age for the Hayes River Group volcanic rocks is consistent with Rb–Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province.


1990 ◽  
Vol 27 (5) ◽  
pp. 649-656 ◽  
Author(s):  
A. Turek ◽  
R. Keller ◽  
W. R. Van Schmus

The Mishibishu greenstone belt, located 40 km west of Wawa, is a typical Archean greenstone belt and is probably an extension of the Michipicoten belt. This belt is composed of basic to felsic metavolcanic rocks of tholeiitic to calc-alkaline affinity and of metasedimentary rocks ranging from conglomerate to argillite. Granitoids, diorites, and gabbros intrude and embay supracrustal rocks as internal and external plutons.Six U–Pb zircon ages have been obtained on rocks in this area. The oldest is 2721 ± 4 Ma for the Jostle Lake tonalite. The bulk of the volcanic rocks formed by 2696 ± 17 Ma, which is the age of the Chimney Point porphyry at the top of the volcanic pile. The Pilot Harbour granite has a similar age of 2693 ± 7 Ma. The age of the Tee Lake tonalite is 2673 ± 12 Ma, and the age of the Iron. Lake gabbro is 2671 ± 4 Ma. The youngest age for volcanics in this part of the Superior Province is 2677 ± 7 Ma, obtained from, the David Lakes pyroclastic breccia. these ages agree with those reported for the adjacent Michipicoten and Gamitagama belts.


2020 ◽  
Author(s):  
Sung Hi Choi ◽  
Seung Gi Jung ◽  
Kang Hyeun Ji

&lt;p&gt;Oldoinyo Lengai is the only active carbonatite volcano within the East African Rift Valley in northern Tanzania. The volcano is dominated by peralkaline silicate rocks with natrocarbonatites. This study presents new mineralogical and geochemical data, including Sr&amp;#8211;Nd&amp;#8211;Pb&amp;#8211;Hf&amp;#8211;Mg isotopic compositions, for volcanic rocks at Oldoinyo Lengai and lavas from the nearby Gregory Rift Valley. The samples analyzed in this study include olivine melilitite, melanephelinite, wollastonite nephelinite, and phonolite. The olivine melilitites and melanephelinites have highly fractionated REE patterns with (La/Yb)&lt;sub&gt;N&lt;/sub&gt; values of 26.4&amp;#8211;64.9, suggesting that they formed from magmas generated by low-degree (up to ~7%) of partial melting within the garnet stability field. The wollastonite nephelinites have much higher (La/Sm)&lt;sub&gt;N&lt;/sub&gt; values but lower (Sm/Yb)&lt;sub&gt;N&lt;/sub&gt; values relative to typical OIB, with flat HREE patterns [(La/Yb)&lt;sub&gt;N&lt;/sub&gt; = ~22]. The phonolites have elevated REE abundances but with patterns intermediate between the other two sample groups [(La/Yb)&lt;sub&gt;N&lt;/sub&gt; = ~41]. All samples have primitive-mantle-normalized incompatible element patterns that are characterized by negative K and Rb anomalies but no significant Eu anomalies. They also have elevated Yb contents relative to the compositions of modeled garnet peridotite-derived melts, suggesting that they were derived from a sublithospheric source containing enriched HIMU-like recycled oceanic crustal material. However, the wollastonite nephelinites have significantly positive Ba, U, Sr, and Pb anomalies similar to those found within the Oldoinyo Lengai natrocarbonatites. The wollastonite nephelinites might have been sourced from a region of sub-continental lithospheric mantle (SCLM) that was previously metasomatized by interaction with carbonatite melts. The phonolites in the study area have also weakly positive Pb and Sr anomalies indicative of some interaction with the SCLM. All samples have d&lt;sup&gt;26&lt;/sup&gt;Mg values (&amp;#8211;0.39&amp;#8240; &amp;#177; 0.07&amp;#8240;) lighter than the composition of normal mantle material (&amp;#8211;0.25&amp;#8240; &amp;#177; 0.04&amp;#8240;). In addition, a negative correlation between d&lt;sup&gt;26&lt;/sup&gt;Mg values and MgO concentrations suggests derivation from a source region containing recycled carbonate. The samples from the study area define a mixing array between HIMU- and EM1-type OIB in Sr&amp;#8211;Nd and Pb&amp;#8211;Pb isotopic correlation diagrams, and have pronounced Nd&amp;#8211;Hf isotopic decoupling, plotting below the mantle regression line in Nd&amp;#8211;Hf isotopic space. The negative deviation from the Nd&amp;#8211;Hf isotopic mantle array and the presence of an EM1-type mantle component in the Sr&amp;#8211;Nd isotopic compositions of the Oldoinyo Lengai volcanic rocks can be generated by recycling of E-MORB-type oceanic crustal material with an age of 1.5&amp;#8211;1.0 Ga.&lt;/p&gt;


1988 ◽  
Vol 25 (5) ◽  
pp. 691-700 ◽  
Author(s):  
Karen St. Seymour ◽  
Don Francis

The Lac Guyer greenstone belt was one of a series of volcanic troughs active during the Archean in the James Bay territory of the Superior Province of Quebec. The belt consists of a succession of isoclinally folded volcanic rocks comprising a lower sequence of basalts overlain by felsic tuffs and rhyodacites that are in turn succeeded by an upper sequence of basalt and komatiite. Plutons of granodioritic composition syntectonically intrude the volcanic succession. The development of this volcanic succession can be interpreted in terms of a model involving an intimate interaction between a differentiated crust and Mg-rich magmas rising from the mantle. Although some of these magmas reached the surface to erupt as komatiites, the majority were trapped at the base of the crust and fractionated towards basaltic compositions. This process caused partial melting of the base of the crust, which was probably mafic in composition, and produced granodioritic magmas whose derivative liquids erupted as rhyodacites.


1987 ◽  
Vol 24 (9) ◽  
pp. 1916-1919 ◽  
Author(s):  
J. Kalliokoski

A belt of Archean quartzose metasedimentary gneisses with minor mafic volcanic rocks (the Pontiac Group) lies south of the Blake River and older Archean mafic volcanic rocks of the Abitibi Greenstone Belt, and is separated from them by the Larder Lake – Cadillac Break. To the west of the Pontiac Group, on strike, is the Archean Larder Lake Group of turbidite conglomerate, argillite, limestone, and iron formation with abundant mafic flows and intrusions. These strata also lie south of the Larder Lake – Cadillac Break and south of the Blake River and older Archean mafic volcanic rocks. The western contact between the Pontiac and Larder Lake groups is covered by a narrow north–south strip of Proterozoic Cobalt sedimentary rocks. On the basis of gravity work that compares the Bouguer gravity anomaly gradient across the Cadillac Break with that across the west margin of the Pontiac Group, it is proposed that the Larder Lake and Pontiac groups are separated by a north–south fault and that the Pontiac Group represents a lithologically distinct uplifted block. The Pontiac block may be an Archean terrane.


1994 ◽  
Vol 31 (7) ◽  
pp. 1256-1286 ◽  
Author(s):  
John A. Percival ◽  
Gordon F. West

Over the past decade, the Kapuskasing uplift has been the subject of intense geological and geophysical investigation as Lithoprobe's window on the deep-crustal structure of the Archean Superior Province. Enigmatic since its recognition as a positive gravity anomaly in 1950, the structure has been variably interpreted as a suture, rift, transcurrent shear zone, or intracratonic thrust. Diverse studies, including geochronology, geothermobarometry, and various geophysical probes, provide a comprehensive three-dimensional image of Archean (2.75–2.50 Ga) crustal evolution and Proterozoic (2.5–1.1 Ga) cooling and uplift. The data favour an interpretation of the structure as an intracratonic uplift related to Hudsonian collision.Eastward across the southern Kapuskasing uplift, erosion levels increase from < 10 km in the Michipicoten greenstone belt, through the Wawa gneiss domain (10–20 km), into granulites (20–30 km) of the Kapuskasing structural zone, juxtaposed against the low-grade Swayze greenstone belt along the Ivanhoe Lake fault zone. Most volcanic rocks in the greenstone belts erupted in the interval 2750–2700 Ma and were thrust, folded, and cut by late plutons and transcurrent faults before 2670 Ma. Wawa gneisses include major 2750–2660 and minor 2920 Ma tonalitic components, deformed in several events including prominent late subhorizontal extensional shear zones prior to 2645 Ma. Supracrustal rocks of the Kapuskasing zone have model Nd ages of 2750–2700 Ma, metamorphic zircon ages of 2696–2584 Ma, and titanite ages of 2600–2493 Ma, reflecting deposition, intrusion, complex deformation, recrystallization, and cooling during prolonged deep-crustal residence. Postorogenic unroofing rapidly cooled shallow (10–20 km) parts of the Superior Province, but metamorphism and local deformation continued in the ductile deep crust, overlapping the time of late gold deposition in shear zones in the shallow brittle regime.Elevation of granulites, expressed geophysically as positive gravity anomalies and a west-dipping zone of high refraction velocities, dates from a major episode of transpressive faulting. Analysis of deformation effects in Matachewan (2454 Ma), Biscotasing (2167 Ma), and Kapuskasing (2040 Ma) dykes, as well as the brittle nature of fault rocks and cooling patterns of granulites, constrains the time of uplift to ca, 1.9 Ga. Approximately 27 km of shortening was accommodated through brittle upper crustal thrusting and ductile growth of an 8 km thick root in the lower crust that has been maintained by relatively cool, strong mantle lithosphere. The present configuration of the uplift results from overall dextral displacement in which the block was broken and deformed by dextral, normal, and sinistral faults, and modified by later isostatic adjustment. Seismic reflection profiles display prominent northwest-dipping reflectors believed to image lithological contacts and ductile strain zones of Archean age; the indistinct reflection character of the Ivanhoe Lake fault is probably related to its brittle nature formed through brecciation and cataclasis at temperatures < 300 °C. The style and orientation of Proterozoic structures may have been influenced by the Archean crustal configuration.


Sign in / Sign up

Export Citation Format

Share Document