U–Pb zircon ages of volcanism and plutonism in the Mishibishu greenstone belt near Wawa, Ontario

1990 ◽  
Vol 27 (5) ◽  
pp. 649-656 ◽  
Author(s):  
A. Turek ◽  
R. Keller ◽  
W. R. Van Schmus

The Mishibishu greenstone belt, located 40 km west of Wawa, is a typical Archean greenstone belt and is probably an extension of the Michipicoten belt. This belt is composed of basic to felsic metavolcanic rocks of tholeiitic to calc-alkaline affinity and of metasedimentary rocks ranging from conglomerate to argillite. Granitoids, diorites, and gabbros intrude and embay supracrustal rocks as internal and external plutons.Six U–Pb zircon ages have been obtained on rocks in this area. The oldest is 2721 ± 4 Ma for the Jostle Lake tonalite. The bulk of the volcanic rocks formed by 2696 ± 17 Ma, which is the age of the Chimney Point porphyry at the top of the volcanic pile. The Pilot Harbour granite has a similar age of 2693 ± 7 Ma. The age of the Tee Lake tonalite is 2673 ± 12 Ma, and the age of the Iron. Lake gabbro is 2671 ± 4 Ma. The youngest age for volcanics in this part of the Superior Province is 2677 ± 7 Ma, obtained from, the David Lakes pyroclastic breccia. these ages agree with those reported for the adjacent Michipicoten and Gamitagama belts.

1984 ◽  
Vol 21 (4) ◽  
pp. 457-464 ◽  
Author(s):  
A. Turek ◽  
Patrick E. Smith ◽  
W. R. Van Schmus

The Archean Michipicoten greenstone belt of the Superior Province in Ontario is made up of supracrustal rocks divided into lower, middle, and upper metavolcanic rocks with associated metasedimentary rocks. The belt has been intruded by granitic rocks and is also surrounded by granitic terranes. Based on U–Pb zircon geochronology it appears that volcanism in the area extended from at least 2749 to 2696 Ma, and plutonism and tectonic activity extended from at least 2888 to 2615 Ma. The various granitic (and also one gabbroic) plutons, both internal and external to the greenstone belt, were emplaced concomitantly with the three volcanic cycles as well as before and after the formation of the volcanic rocks. Zircon ages reported here, together with previously published ages, show that the area evolved in six major volcanic and plutonic events: (I) 2888 Ma—plutonism, (II) 2743 Ma—volcanism and plutonism, (III) 2717 Ma—volcanism and plutonism, (IV) 2696 Ma—volcanism and plutonism, (V) 2668 Ma—plutonism, and (VI) 2615 Ma—plutonism. The oldest rock dated at 2888 ± 2 Ma belongs to the external granitic terrane and may be basement to the supracrustal rocks.


1982 ◽  
Vol 19 (8) ◽  
pp. 1608-1626 ◽  
Author(s):  
A. Turek ◽  
Patrick E. Smith ◽  
W. R. Van Schmus

The Michipicoten greenstone belt at Wawa, Ontario is typical of Archean volcanic belts in the Superior Province. The supracrustal rocks are divisible into lower, middle, and upper metavolcanic sequences, which are separated by iron formation and clastic metasedimentary rocks. These are intruded by granitic stocks and embayed by granitic batholiths.This study reports whole rock Rb–Sr and zircon U–Pb ages for the lower and upper metavolcanics, for the granitic rocks that are physically within the greenstone belt (internal granites), and for the granitic rocks that embay the greenstone belt (external granites). The apparent Rb–Sr ages for the lower metavolcanics are 2530 ± 90, 2285 ± 70, and 2680 ± 490 Ma. The U–Pb ages are 2749 ± 2 and 2744 ± 10 Ma. The internal granites give an Rb–Sr age of 2560 ± 270 Ma and a U–Pb age of 2737 ± 6 Ma. The external granite at Hawk Lake indicates an Rb–Sr age of 2550 ± 175 Ma and a U–Pb age of 2747 ± 7 Ma. It is possible that this unit contains elements older than 2812 Ma as it contains xenocrystic zircons. The upper volcanics give a U–Pb age of 2696 ± 2 Ma, which indicates that the belt evolved over a time period in excess of 53 Ma. The Rb–Sr ages are significantly younger than the U–Pb zircon ages and have very large uncertainties in age; hence it is unlikely that they have any stratigraphic significance. They probably reflect the Kenoran orogeny at about 2560 Ma. The 2285 ± 70 Ma Rb–Sr isochron age has an initial ratio of 0.7275 ± 0.0052, which is interpreted as a rotational isochron defining a younger post-Kenoran event in the area. The zircon ages appear to be correct chronostratigraphically. Furthermore, it appears that the granitic rocks are coeval and may also be cogenetic with the lower acid metavolcanic rocks.


1980 ◽  
Vol 17 (5) ◽  
pp. 560-568 ◽  
Author(s):  
G. S. Clark ◽  
S.-P. Cheung

Rb–Sr whole-rock ages have been determined for rocks from the Oxford Lake – Knee Lake – Gods Lake greenstone belt, in the Superior Province of northeastern Manitoba.The age of the Magill Lake Pluton is 2455 ± 35 Ma (λ87Rb = 1.42 × 10−11 yr−1), with an initial 87Sr/86Sr ratio of 0.7078 ± 0.0043. This granitic stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism.The age of the Bayly Lake Pluton is 2424 ± 74 Ma, with an initial 87Sr/86Sr ratio of 0.7029 ± 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed.The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 ± 125 Ma, with an initial 87Sr/86Sr ratio of 0.7014 ± 0.0009.The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granitic intrusion in the area.The age for the Hayes River Group volcanic rocks is consistent with Rb–Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province.


2019 ◽  
Vol 27 (2) ◽  
pp. 161-186
Author(s):  
A. B. Vrevskii

The paper reports new data on the composition and age of the Neoarchean calc-alkaline volcanic rocks of the Uraguba–Kolmozero–Voron’ya greenstone belt (UKV GB). Petrological-geochemical modeling indicates a polygenetic origin of primary melts of the basalt–andesite–dacite association and non-subduction geodynamic mechanisms for the crustal growth in the largest greenstone belt of the Kola–Norwegian Block of the Fennoscandian shield.


1991 ◽  
Vol 28 (11) ◽  
pp. 1769-1779 ◽  
Author(s):  
Sandra M. Barr ◽  
Rebecca A. Jamieson

Interlayered mafic and felsic metavolcanic rocks and metasedimentary rocks of Ordovician to Silurian age are characteristic of the Aspy terrane of northwestern Cape Breton Island. These rocks were affected by medium- to high-grade metamorphism and were intruded by synkinematic granitoid orthogneisses during Late Silurian to Early Devonian times. They were intruded by posttectonic Devonian granitic plutons and experienced rapid Devonian decompression and cooling. The chemical characteristics of the mafic metavolcanic rocks indicate that they are tholeiites formed in a volcanic-arc setting. The volcanic rocks of the Aspy terrane differ from many other Silurian and Silurian–Devonian successions in Atlantic Canada, which have chemical and stratigraphic characteristics of volcanic rocks formed in extensional within-plate settings, and are somewhat younger than the Aspy terrane sequences. Aspy terrane units are most similar to Ordovician–Silurian volcanic and metamorphic units in southwestern Newfoundland, including the La Poile Group and the Port aux Basques gneiss. Together with other occurrences of Late Ordovician to Early Silurian volcanic-arc units, they indicate that subduction-related compressional tectonics continued into the Silurian in parts of the northern Appalachian Orogen. The complex Late Silurian – Devonian tectonic history of the Aspy terrane may reflect collision with the southeastern edge of a Grenvillian crustal promentory.


1981 ◽  
Vol 18 (2) ◽  
pp. 323-329 ◽  
Author(s):  
A. Turek ◽  
T. E. Smith ◽  
C. H. Huang

The Gamitagama greenstone belt is situated to the south of the Archean Wawa belt of the Superior Province, and is about 50 km south of Wawa, Ontario. The Rb–Sr ages being reported here show that the metavolcanic and associated metasedimentary rocks are older than 2665 ± 45 Ma, which is a whole-rock isochron age of the pretectonic or syntectonic trondhjemitic plutons. The Gamitagama Lake complex, a calcalkalic differentiated and multiple diorite pluton, postdates the regional metamorphism and gives an age of 2645 ± 100 Ma. Potassic granitoid stocks, which are considered to be coeval with the Gamitagama Lake complex, define an isochron age of 2590 ± 80 Ma. The greenstone belt and associated intrusives are adjacent to the Southern batholith, a complex terrain of gneisses and migmatites, for which an isochron age of 2570 ± 90 Ma has been obtained. The radiometric ages reported here support the established stratigraphic sequence and prove that the rocks are Archean in age.


1982 ◽  
Vol 19 (12) ◽  
pp. 2258-2275 ◽  
Author(s):  
Léopold Gélinas ◽  
Michel Mellinger ◽  
Pierre Trudel

In a suite of Archean mafic pillows from the Rouyn–Noranda region of Quebec's Abitibi Greenstoné Belt, including both tholeiitic and calc-alkaline varieties spanning the prehnite–pumpellyite to upper greenschist metamorphic facies, three types of alteration can be defined: (I) chlorite–epidote–actinolite; (II) chlorite–epidote; and (III) chlorite ± sericite; the number of mineral phases decreases as a result of progressive hydration from type I to type III alteration. Albitization, resulting from substitution of [Formula: see text], in calcic plagioclase, is highly variable in type I alteration, but in types II and III the plagioclase is totally albitized and in some cases silicified. Chloritization is closely linked to increasing hydration and Ca leaching with MgO and FeO substituting for CaO in ferromagnesian minerals.Calcium was mobilized and carried by solutions, as evidenced by the variable concentration of epidote at the margins of pillows. This calcium leaching generated an excess of Al2O3 with respect to the combined molecular proportions of Na2O, K2O, and CaO, and is shown by the presence of corundum in CIPW norm calculations. In some pillows showing substitution of [Formula: see text], the fo2 of the invading fluid appears to have remained constant, being buffered by the pillow composition; this would be favored by a low water/rock mass ratio. As a result, the initial pillow Fe2O3/FeO ratio remained constant. In other pillows, the fo2 appears to have been imposed by the invading fluid rather than by the mineral assemblage: the FeO/MgO ratios are thus no longer representative of the magmatic composition whereas the ΣFeO/MgO is still representative of the pristine magmatic value.Two types of substitution of CaO by FeO and (or) MgO have been observed: (1) preferential substitution restricted to type I alteration, of FeO over MgO, similar to low-temperature substitution in modern-day sea-floor alteration; and (2) the more common substitution in type II and III alterations in which MgO predominates over FeO, similar to the high-temperature substitution taking place at great depth on the ocean floor.Although the samples were collected to test mineral heterogeneities caused by chemical degradation, more than 40% of the pillows sampled retained their pristine ΣFeO/MgO ratios. The various alteration patterns are independent of the initial tholeiitic or calc-alkaline lineage; this was confirmed using rare earth elements (REE) and inert trace elements such as Zr, Y, and Ti. The chemical changes in the mafic metavolcanic rocks do not obliterate their tholeiitic or calc-alkaline chemical affinities.


1990 ◽  
Vol 27 (4) ◽  
pp. 582-589 ◽  
Author(s):  
S. L. Jackson ◽  
R. H. Sutcliffe

Published U–Pb geochronological, geological, and petrochemical data suggest that there are late Archean ensialic greenstone belts (GB) (Michipicoten GB and possibly the northern Abitibi GB), ensimatic greenstone belts (southern Abitibi GB and Batchawana GB), and possibly a transitional ensimatic–ensialic greenstone belt (Swayze GB) in the central Superior Province. This lateral crustal variability may preclude simple correlation of the Michipicoten GB and its substrata, as exposed in the Kapuskasing Uplift, with that of the southern Abitibi GB. Furthermore, this lateral variability may have determined the locus of the Kapuskasing Uplift. Therefore, although the Kapuskasing Uplift provides a useful general crustal model, alternative models of crustal structure and tectonics for the southern Abitibi GB warrant examination.Thrusting of a juvenile, ensimatic southern Abitibi GB over a terrane containing evolved crust is consistent with (i) the structural style of the southern Abitibi GB; (ii) juvenile southern Abitibi GB metavolcanic rocks intruded by rocks having an isotopically evolved, older component; and (iii) Proterozoic extension that preserved low-grade metavolcanic rocks within the down-dropped Cobalt Embayment, which is bounded by higher grade terranes to the east and west.


Sign in / Sign up

Export Citation Format

Share Document