The Kapuskasing uplift: a geological and geophysical synthesis

1994 ◽  
Vol 31 (7) ◽  
pp. 1256-1286 ◽  
Author(s):  
John A. Percival ◽  
Gordon F. West

Over the past decade, the Kapuskasing uplift has been the subject of intense geological and geophysical investigation as Lithoprobe's window on the deep-crustal structure of the Archean Superior Province. Enigmatic since its recognition as a positive gravity anomaly in 1950, the structure has been variably interpreted as a suture, rift, transcurrent shear zone, or intracratonic thrust. Diverse studies, including geochronology, geothermobarometry, and various geophysical probes, provide a comprehensive three-dimensional image of Archean (2.75–2.50 Ga) crustal evolution and Proterozoic (2.5–1.1 Ga) cooling and uplift. The data favour an interpretation of the structure as an intracratonic uplift related to Hudsonian collision.Eastward across the southern Kapuskasing uplift, erosion levels increase from < 10 km in the Michipicoten greenstone belt, through the Wawa gneiss domain (10–20 km), into granulites (20–30 km) of the Kapuskasing structural zone, juxtaposed against the low-grade Swayze greenstone belt along the Ivanhoe Lake fault zone. Most volcanic rocks in the greenstone belts erupted in the interval 2750–2700 Ma and were thrust, folded, and cut by late plutons and transcurrent faults before 2670 Ma. Wawa gneisses include major 2750–2660 and minor 2920 Ma tonalitic components, deformed in several events including prominent late subhorizontal extensional shear zones prior to 2645 Ma. Supracrustal rocks of the Kapuskasing zone have model Nd ages of 2750–2700 Ma, metamorphic zircon ages of 2696–2584 Ma, and titanite ages of 2600–2493 Ma, reflecting deposition, intrusion, complex deformation, recrystallization, and cooling during prolonged deep-crustal residence. Postorogenic unroofing rapidly cooled shallow (10–20 km) parts of the Superior Province, but metamorphism and local deformation continued in the ductile deep crust, overlapping the time of late gold deposition in shear zones in the shallow brittle regime.Elevation of granulites, expressed geophysically as positive gravity anomalies and a west-dipping zone of high refraction velocities, dates from a major episode of transpressive faulting. Analysis of deformation effects in Matachewan (2454 Ma), Biscotasing (2167 Ma), and Kapuskasing (2040 Ma) dykes, as well as the brittle nature of fault rocks and cooling patterns of granulites, constrains the time of uplift to ca, 1.9 Ga. Approximately 27 km of shortening was accommodated through brittle upper crustal thrusting and ductile growth of an 8 km thick root in the lower crust that has been maintained by relatively cool, strong mantle lithosphere. The present configuration of the uplift results from overall dextral displacement in which the block was broken and deformed by dextral, normal, and sinistral faults, and modified by later isostatic adjustment. Seismic reflection profiles display prominent northwest-dipping reflectors believed to image lithological contacts and ductile strain zones of Archean age; the indistinct reflection character of the Ivanhoe Lake fault is probably related to its brittle nature formed through brecciation and cataclasis at temperatures < 300 °C. The style and orientation of Proterozoic structures may have been influenced by the Archean crustal configuration.

2006 ◽  
Vol 43 (7) ◽  
pp. 929-945 ◽  
Author(s):  
C Sasseville ◽  
K Y Tomlinson ◽  
A Hynes ◽  
V McNicoll

In western Superior province, the North Caribou terrane (NCT) constitutes a Mesoarchean proto-continent heavily overprinted by Neoarchean magmatism and deformation resulting from the western Superior Province accretion. Locally, along the southern margin of the NCT, Mesoarchean (~3.0 Ga) rift sequences are preserved. These sequences are of key importance to our understanding of the early tectonic evolution of continental crust. The Wallace Lake greenstone belt is located at the southern margin of the NCT and includes the Wallace Lake assemblage, the Big Island assemblage, the Siderock Lake assemblage, and the French Man Bay assemblage. The Wallace Lake assemblage exposes one of the best-preserved Mesoarchean rift sequences along the southern margin of the NCT. The volcano-sedimentary assemblage (3.0–2.92 Ga) exposes arkoses derived from the uplift of a tonalite basement in a subaqueous environment, capped by carbonate and iron formation. Mafic to ultramafic volcanic rocks exhibiting crustal contamination and derived from plume magmatism cap this rift sequence. The Wallace Lake assemblage exhibits D1 Mesoarchean deformation. The Big Island assemblage comprises mafic volcanic rocks of oceanic affinity that were docked to the Wallace Lake assemblage along northwest-trending D2 shear zones. The timing of volcanism and docking of the Big Island assemblage remain uncertain. The Siderock Lake and French Man Bay assemblages were deposited in strike-slip basins related to D3 and D4 stages of movement of the transcurrent Wanipigow fault (<2.709 Ga). Regionally, the Wallace Lake assemblage correlates with the Lewis–Story Rift assemblage observed in Lake Winnipeg, whereas the Big Island assemblage appears to correlate with the Black Island assemblage observed in the Lake Winnipeg area. Thus, the North Caribou terrane appears to preserve vestiges of a Mesoarchean rifted succession together with overlying Neoarchean allochthonous, juvenile, volcanic successions over a considerable distance along its present-day southern margin.


1980 ◽  
Vol 17 (5) ◽  
pp. 560-568 ◽  
Author(s):  
G. S. Clark ◽  
S.-P. Cheung

Rb–Sr whole-rock ages have been determined for rocks from the Oxford Lake – Knee Lake – Gods Lake greenstone belt, in the Superior Province of northeastern Manitoba.The age of the Magill Lake Pluton is 2455 ± 35 Ma (λ87Rb = 1.42 × 10−11 yr−1), with an initial 87Sr/86Sr ratio of 0.7078 ± 0.0043. This granitic stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism.The age of the Bayly Lake Pluton is 2424 ± 74 Ma, with an initial 87Sr/86Sr ratio of 0.7029 ± 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed.The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 ± 125 Ma, with an initial 87Sr/86Sr ratio of 0.7014 ± 0.0009.The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granitic intrusion in the area.The age for the Hayes River Group volcanic rocks is consistent with Rb–Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province.


1990 ◽  
Vol 27 (4) ◽  
pp. 582-589 ◽  
Author(s):  
S. L. Jackson ◽  
R. H. Sutcliffe

Published U–Pb geochronological, geological, and petrochemical data suggest that there are late Archean ensialic greenstone belts (GB) (Michipicoten GB and possibly the northern Abitibi GB), ensimatic greenstone belts (southern Abitibi GB and Batchawana GB), and possibly a transitional ensimatic–ensialic greenstone belt (Swayze GB) in the central Superior Province. This lateral crustal variability may preclude simple correlation of the Michipicoten GB and its substrata, as exposed in the Kapuskasing Uplift, with that of the southern Abitibi GB. Furthermore, this lateral variability may have determined the locus of the Kapuskasing Uplift. Therefore, although the Kapuskasing Uplift provides a useful general crustal model, alternative models of crustal structure and tectonics for the southern Abitibi GB warrant examination.Thrusting of a juvenile, ensimatic southern Abitibi GB over a terrane containing evolved crust is consistent with (i) the structural style of the southern Abitibi GB; (ii) juvenile southern Abitibi GB metavolcanic rocks intruded by rocks having an isotopically evolved, older component; and (iii) Proterozoic extension that preserved low-grade metavolcanic rocks within the down-dropped Cobalt Embayment, which is bounded by higher grade terranes to the east and west.


2006 ◽  
Vol 43 (7) ◽  
pp. 749-765 ◽  
Author(s):  
S Lin ◽  
D W Davis ◽  
E Rotenberg ◽  
M T Corkery ◽  
A H Bailes

The study of lithology, geochronology, and structure in the Oxford–Stull terrane, in particular in the Gods Lake Narrows area, has led to the recognition of three distinct supracrustal sequences: ~2.8–2.9 Ga volcanic rocks; a ~2720 Ma fault-bounded package of volcanics and sandstones; and ~2705 Ma conglomerate and alkaline volcanic rocks of the Oxford Lake Group. Detrital zircon as old as 3647 Ma is present in the Oxford Lake Group. An early generation of folding and shearing occurred prior to deposition of the Oxford Lake Group and was probably synchronous with emplace ment of 2721 Ma tonalite dykes. The second generation of deformation caused south-over-north thrusting of volcanic rocks over the Oxford Lake Group. The youngest fabric resulted from east-southeast-trending, dextral, south-over-north shearing. The youngest rock dated in the area is the 2668 ± 1 Ma Magill Lake pluton, which records crustal melting following deformation. The pattern of sedimentation and deformation in this area is similar to but slightly older than that found in the southern half of the Superior Province, which shows a southward-younging diachroneity. The south-dipping north-vergent shear zones observed in the area contrast with dominantly north-dipping south-vergent structures observed and interpreted south of the North Caribou superterrane (NCS). The limited size of the study area precludes any strongly based large-scale tectonic interpretation; however, data and observations from the Gods Lake Narrows area are most easily accommodated in a model where the NCS served as a nucleus onto which other terranes were accreted and both the northern and southern margins of the NCS were Andean-type continental margins with opposite subduction polarities.


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Pierre Mueller ◽  
Matteo Maino ◽  
Silvio Seno

This paper reports the results of a field-based structural investigation of a well-exposed paleo-accretionary prism, which experienced complex deformation in a low-grade metamorphic setting. Field analyses focused on the description of structural fabrics, with the main emphasis upon parameters like the orientation, style and kinematics of foliations, folds and shear zones. We address the research to the south-westernmost part of the Alpine chain, the Ligurian Alps, where, despite their origin as turbidite sequences deposited into the closing Alpine Tethys Ocean, the Helminthoid Flysch Nappes are presently distributed in the outer part of the chain, above the foreland. The new dataset highlights different deformation patterns related to the different spatial distribution of the flysch units. This regional-scale partitioning of strain is hence associated with progressive deformation within a two-stage geodynamic evolution. Correlations among the different orogenic domains allow the proposal of a kinematic model that describes the motion of the Helminthoid Flysch from the inner to the outer part of the orogen, encompassing the shift from subduction- to collision-related Alpine geodynamic phases.


2020 ◽  
Vol 50 (1) ◽  
pp. 83-130 ◽  
Author(s):  
Pietari Skyttä ◽  
Pär Weihed ◽  
Karin Högdahl ◽  
Stefan Bergman ◽  
Michael B. Stephens

AbstractThe Bothnia–Skellefteå lithotectonic unit is dominated by turbiditic wacke and argillite (Bothnian basin), deposited at 1.96 (or older)–1.86 Ga, metamorphosed generally under high-grade conditions and intruded by successive plutonic suites at 1.95–1.93, 1.90–1.88, 1.87–1.85 and 1.81–1.76 Ga. In the northern part, low-grade and low-strain, 1.90–1.86 Ga predominantly magmatic rocks (the Skellefte–Arvidsjaur magmatic province) are enclosed by the basinal components. Subduction-related processes in intra-arc basin and magmatic arc settings, respectively, are inferred. Changes in the metamorphic grade and the relative timing of deformation and structural style across the magmatic province are linked to major shear zones trending roughly north–south and, close to the southern margin, WNW–ESE. Zones trending WNW–ESE and ENE–WSW dominate southwards. Slip along the north–south zones in an extensional setting initiated synchronously with magmatic activity at 1.90–1.88 Ga. Tectonic inversion steered by accretion to a craton to the east, involving crustal shortening, ductile strain and crustal melting, occurred at 1.88–1.85 Ga. Deformation along shear zones under lower-grade conditions continued at c. 1.8 Ga. Felsic volcanic rocks (1.90–1.88 Ga) host exhalative and replacement-type volcanogenic massive sulphide deposits (the metallogenic Skellefte district). Other deposits include orogenic Au, particularly along the ‘gold line’ SW of this district, porphyry Cu–Au–Mo, and magmatic Ni–Cu along the ‘nickel line’ SE of the ‘gold line’.


1980 ◽  
Vol 17 (11) ◽  
pp. 1506-1516 ◽  
Author(s):  
R. A. Gibb ◽  
M. D. Thomas

A gravity map compiled from observations made on the frozen surface of Great Slave Lake shows that the positive gravity anomaly associated with the Yellowknife greenstone belt extends offshore into the North Arm of the lake. On the western shore of Yellowknife Bay the axis of the anomaly coincides with mafic volcanic rocks of the Kam Formation. Offshore the axis continues southwards for about 10 km to the West Mirage Islands where it takes a dramatic turn to the southeast and continues for a further 60 km to the Outer Whaleback Rocks. Using the geology and rock density determinations on land for control, a three-dimensional geological model comprising a large number of prismatic blocks was derived from the gravity anomalies. In the model the simplifying assumption has been made that the greenstone belt is everywhere floored by granodiorite similar to the adjacent Western and South-east granodiorites. According to the model, mafic volcanic rocks of the Kam Formation are generally 1–3 km thick with a maximum thickness of 7 km at the mouth of Yellowknife Bay. Greywacke and mudstone of the Burwash Formation vary in thickness from 1 to 3 km. Locally these sedimentary rocks attain a thickness of 8 km but this is probably an overestimated value as they may very well be underlain by volcanic rocks of the Kam Formation. The presence of a third pluton of granodiorite flanking the belt to the southwest is also inferred from the gravity data. Previous seismic work indicated a greenstone basin with an average thickness of about 10 km. However, reexamination of the seismic records suggests that weak arrivals interpreted as originating from the base of the greenstone belt are more likely to be pulses associated with earlier arrivals.


1990 ◽  
Vol 27 (5) ◽  
pp. 649-656 ◽  
Author(s):  
A. Turek ◽  
R. Keller ◽  
W. R. Van Schmus

The Mishibishu greenstone belt, located 40 km west of Wawa, is a typical Archean greenstone belt and is probably an extension of the Michipicoten belt. This belt is composed of basic to felsic metavolcanic rocks of tholeiitic to calc-alkaline affinity and of metasedimentary rocks ranging from conglomerate to argillite. Granitoids, diorites, and gabbros intrude and embay supracrustal rocks as internal and external plutons.Six U–Pb zircon ages have been obtained on rocks in this area. The oldest is 2721 ± 4 Ma for the Jostle Lake tonalite. The bulk of the volcanic rocks formed by 2696 ± 17 Ma, which is the age of the Chimney Point porphyry at the top of the volcanic pile. The Pilot Harbour granite has a similar age of 2693 ± 7 Ma. The age of the Tee Lake tonalite is 2673 ± 12 Ma, and the age of the Iron. Lake gabbro is 2671 ± 4 Ma. The youngest age for volcanics in this part of the Superior Province is 2677 ± 7 Ma, obtained from, the David Lakes pyroclastic breccia. these ages agree with those reported for the adjacent Michipicoten and Gamitagama belts.


1988 ◽  
Vol 25 (5) ◽  
pp. 691-700 ◽  
Author(s):  
Karen St. Seymour ◽  
Don Francis

The Lac Guyer greenstone belt was one of a series of volcanic troughs active during the Archean in the James Bay territory of the Superior Province of Quebec. The belt consists of a succession of isoclinally folded volcanic rocks comprising a lower sequence of basalts overlain by felsic tuffs and rhyodacites that are in turn succeeded by an upper sequence of basalt and komatiite. Plutons of granodioritic composition syntectonically intrude the volcanic succession. The development of this volcanic succession can be interpreted in terms of a model involving an intimate interaction between a differentiated crust and Mg-rich magmas rising from the mantle. Although some of these magmas reached the surface to erupt as komatiites, the majority were trapped at the base of the crust and fractionated towards basaltic compositions. This process caused partial melting of the base of the crust, which was probably mafic in composition, and produced granodioritic magmas whose derivative liquids erupted as rhyodacites.


Sign in / Sign up

Export Citation Format

Share Document