Damping of internal gravity waves by small-scale turbulence

1997 ◽  
Vol 23 (7) ◽  
pp. 110
2008 ◽  
Vol 65 (4) ◽  
pp. 1414-1427 ◽  
Author(s):  
Y. P. Meillier ◽  
R. G. Frehlich ◽  
R. M. Jones ◽  
B. B. Balsley

Abstract Constant altitude measurements of temperature and velocity in the residual layer of the nocturnal boundary layer, collected by the Cooperative Institute for Research in Environmental Sciences (CIRES) Tethered Lifting System (TLS), exhibit fluctuations identified by previous work (Fritts et al.) as the signature of ducted gravity waves. The concurrent high-resolution TLS turbulence measurements (temperature structure constant C2T and turbulent kinetic energy dissipation rate ɛ) reveal the presence of patches of enhanced turbulence activity that are roughly synchronized with the troughs of the temperature and velocity fluctuations. To investigate the potentially dominant role ducted gravity waves might play on the modulation of atmospheric stability and therefore, on turbulence, time series of the wave-modulated gradient Richardson number (Ri) and of the vertical gradient of potential temperature ∂θ/∂z(t) are computed numerically and compared to the TLS small-scale turbulence measurements. The results of this study agree with the predictions of previous theoretical studies (i.e., wave-generated fluctuations of temperature and velocity modulate the gradient Richardson number), resulting in periodic enhancements of turbulence at Ri minima. The patches of turbulence observed in the TLS dataset are subsequently identified as convective instabilities generated locally within the unstable phase of the wave.


2010 ◽  
Vol 67 (8) ◽  
pp. 2504-2519 ◽  
Author(s):  
Daniel Ruprecht ◽  
Rupert Klein ◽  
Andrew J. Majda

Abstract Starting from the conservation laws for mass, momentum, and energy together with a three-species bulk microphysics model, a model for the interaction of internal gravity waves and deep convective hot towers is derived using multiscale asymptotic techniques. From the leading-order equations, a closed model for the large-scale flow is obtained analytically by applying horizontal averages conditioned on the small-scale hot towers. No closure approximations are required besides adopting the asymptotic limit regime on which the analysis is based. The resulting model is an extension of the anelastic equations linearized about a constant background flow. Moist processes enter through the area fraction of saturated regions and through two additional dynamic equations describing the coupled evolution of the conditionally averaged small-scale vertical velocity and buoyancy. A two-way coupling between the large-scale dynamics and these small-scale quantities is obtained: moisture reduces the effective stability for the large-scale flow, and microscale up- and downdrafts define a large-scale averaged potential temperature source term. In turn, large-scale vertical velocities induce small-scale potential temperature fluctuations due to the discrepancy in effective stability between saturated and nonsaturated regions. The dispersion relation and group velocity of the system are analyzed and moisture is found to have several effects: (i) it reduces vertical energy transport by waves, (ii) it increases vertical wavenumbers but decreases the slope at which wave packets travel, (iii) it introduces a new lower horizontal cutoff wavenumber in addition to the well-known high wavenumber cutoff, and (iv) moisture can cause critical layers. Numerical examples reveal the effects of moisture on steady-state and time-dependent mountain waves in the present hot-tower regime.


2013 ◽  
Vol 20 (6) ◽  
pp. 977-986 ◽  
Author(s):  
O. A. Druzhinin ◽  
L. A. Ostrovsky ◽  
S. S. Zilitinkevich

Abstract. This paper presents the results of modeling the interaction between internal waves (IWs) and turbulence using direct numerical simulation (DNS). Turbulence is excited and supported by a random forcing localized in a vertical layer separated from the pycnocline. The main attention is paid to the internal wave damping due to turbulence and comparison of the results with those obtained theoretically by using the semi-empirical approach. It is shown that the IW damping rate predicted by the theory agrees well with the DNS results when turbulence is sufficiently strong to be only weakly perturbed by the internal wave; however, the theory overestimates the damping rate of IWs for a weaker turbulence. The DNS parameters are matched to the parameters of the laboratory experiment, and an extrapolation to the oceanic scales is also provided.


2020 ◽  
Author(s):  
Yuliya Kurdyaeva ◽  
Olga Borchevkina ◽  
Sergey Kshevetskii

<p>The atmosphere and ionosphere are a complex dynamic system, which is affected by sources, caused both by internal processes and external ones. It is known that atmospheric waves propagating from the troposphere to the upper atmosphere make a significant contribution to the state of this system. One of the regular sources of such waves are various tropospheric disturbances caused, for example, by meteorological processes. Numerical modeling is an effective tool for studying these processes and the effects they cause. However, a number of problems arise, while setting up numerical experiments. The first is that most atmospheric models use hydrostatic approximation (which does not allow the resolution of small-scale perturbations) and work for a limited range of heights (which does not allow studying the relationship between the lower and upper atmosphere). This demands an accurate selection of the model in accordance with the stated research goals. The second problem is the difficulty of direct definition of the wave tropospheric sources, that was mentioned before, due to the lack of experimental information for their detailed description. The authors proposed, researched and tested a way to solve this problem. It was shown that the solution of the problem of waves propagation from a certain tropospheric source is completely determined by the pressure field at the surface of the Earth. This work is devoted to solving various problems using this approach.</p><p>This study presents the results of calculations of the propagation of infrasound and internal gravity waves from tropospheric disturbances given by pressure variations at the surface of the Earth. The experimental data associated with various meteorological events and the passage of the solar terminator were obtained both directly - by a network of microbarographs in the studied region, and indirectly - based on the data from the LIDAR signal intensity and temperature changes in the coastal region. The calculations were done using the non-hydrostatic numerical model “AtmoSym”. The characteristics of atmospheric waves generated by such sources are estimated. The effect from a tropospheric sources on the state of the upper atmosphere and ionosphere is investigated. The physical processes that determine the change in atmospheric parameters are discussed.  It is shown that the main contribution from wave disturbances generated by meteorological sources belongs to infrasound. Infrasound and internal gravity waves can be sources of travelling wave packets and can also cause a sporadic E-layer.</p><p>The study was funded by RFBR and Kaliningrad region according to the research project  19-45-390005 (Y. Kurdyaeva) and  RFBR to the research project  18-05-00184 (O. Borchevkina).</p>


2020 ◽  
Vol 37 (5) ◽  
pp. 759-776 ◽  
Author(s):  
Qiang Lian ◽  
William D. Smyth ◽  
Zhiyu Liu

AbstractWe explore numerical methods for the stability analysis of stratified, parallel shear flows considering the effects of small-scale turbulence represented by eddy viscosity and diffusivity. The result is an extension of the classical Taylor–Goldstein problem applicable to oceanic and atmospheric flows. Solutions with imaginary frequency describe shear and convective instabilities, whereas those with real frequency represent internal gravity waves. Application to large observational datasets can involve considerable computation and therefore requires a compromise between speed and accuracy. We compare several numerical methods to identify optimal approaches to various problems.


2021 ◽  
Author(s):  
Robert Vicari

<p>Highly idealized model studies suggest that convectively generated internal gravity waves in the troposphere with horizontal wavelengths on the order of a few kilometers may affect the lifetime, spacing, and depth of clouds and convection. To answer whether such a convection-wave coupling occurs in the real atmosphere, one needs to find corresponding events in observations. In general, the study of high-frequency internal gravity wave-related phenomena in the troposphere is a challenging task because they are usually small-scale and intermittent. To overcome case-by-case studies, it is desirable to have an automatic method to analyze as much data as possible and provide enough independent and diverse evidence.<br>Here, we focus on brightness temperature satellite images, in particular so-called satellite water vapor channels. These channels measure the radiation at wavelengths corresponding to the energy emitted by water vapor and provide cloud-independent observations of internal gravity waves, in contrast to visible and other infrared satellite channels where one relies on the wave impacts on clouds. In addition, since these water vapor channels are sensitive to certain vertical layers in the troposphere, combining the images also reveals some vertical structure of the observed waves.<br>We propose an algorithm based on local Fourier analyses to extract information about high-frequency wave patterns in given brightness temperature images. This method allows automatic detection and analysis of many wave patterns in a given domain at once, resulting in a climatology that provides an initial observational basis for further research. Using data from the instrument ABI on board the satellite GOES-16 during the field campaign EUREC<sup>4</sup>A, we demonstrate the capabilities and limitations of the method. Furthermore, we present the respective climatology of the detected waves and discuss approaches based on this to address the initial question.</p>


1984 ◽  
Vol 62 (10) ◽  
pp. 963-967 ◽  
Author(s):  
Kevin Hamilton

There has recently been a great deal of interest in the possibility that vertically propagating internal gravity waves may be dissipated by small-scale convective or shear instabilities in the upper stratosphere and mesosphere. In the present study, a very simple analysis of about 3000 rocket soundings of temperature and wind at several stations between 8°N and 59°N was conducted in order to obtain quantitative estimates of the frequency of occurrence of dynamically unstable conditions as a function of height, latitude, and season. It was found that in about one-third of the profiles, the local Richardson number dropped below 0.25 at some level near the stratopause. From the results, it appears that gravity wave "breaking" generally occurs at considerably higher altitudes in the tropics than in midlatitudes. There is also a fairly clear indication of higher wave breaking levels in summer than in winter, at least at high latitudes.


2013 ◽  
Vol 9 (S301) ◽  
pp. 193-196
Author(s):  
Irina N. Kitiashvili

AbstractThe problem of interaction of stellar pulsations with turbulence and radiation in stellar convective envelopes is central to our understanding of excitation mechanisms, oscillation amplitudes and frequency shifts. Realistic (“ab initio”) numerical simulations provide unique insights into the complex physics of pulsation-turbulence-radiation interactions, as well as into the energy transport and dynamics of convection zones, beyond the standard evolutionary theory. 3D radiative hydrodynamics simulations have been performed for several Kepler target stars, from M- to A-class along the main sequence, using a new ‘StellarBox’ code, which takes into account all essential physics and includes subgrid scale turbulence modeling. The results reveal dramatic changes in the convection and pulsation properties among stars of different mass. For relatively massive stars with thin convective envelopes, the simulations allow us to investigate the dynamics the whole envelope convection zone including the overshoot region, and also look at the excitation of internal gravity waves. Physical properties of the turbulent convection and pulsations, and the oscillation spectrum for two of these targets are presented and discussed in this paper. In one of these stars, with mass 1.47 M⊙, we simulate the whole convective zone and investigate the overshoot region at the boundary with the radiative zone.


2019 ◽  
Vol 15 ◽  
pp. 6121-6137
Author(s):  
Gangamani Hv

This paper focuses on the study of acoustic propagation of internal gravity waves which generates small scale variations through propagation and hence can obtain transmission co-efficients using N2 buoyancy frequency variation of a compressible stratified fluid for a small regions. We have also analysed the results using the asymptotic expansions for large compressible limits. The reduction of the transmission in the N2-barrier region for the density layers sandwiched along with acoustic waves is obtained through graphs for different density barrier regions. The dispersion characteristics shows the contours of the transmission in the wave number plane. The curves for ! < N0 are hyperbolic, representing internal gravity waves as these become the dispersionwaves for an incompressible fluid and the curve with ! > N0 are ellipsoids which represent the acoustic gravity or infrasonic waves for the cut off frequency


Sign in / Sign up

Export Citation Format

Share Document