A study of the occurrence of dynamically unstable conditions in the middle atmosphere

1984 ◽  
Vol 62 (10) ◽  
pp. 963-967 ◽  
Author(s):  
Kevin Hamilton

There has recently been a great deal of interest in the possibility that vertically propagating internal gravity waves may be dissipated by small-scale convective or shear instabilities in the upper stratosphere and mesosphere. In the present study, a very simple analysis of about 3000 rocket soundings of temperature and wind at several stations between 8°N and 59°N was conducted in order to obtain quantitative estimates of the frequency of occurrence of dynamically unstable conditions as a function of height, latitude, and season. It was found that in about one-third of the profiles, the local Richardson number dropped below 0.25 at some level near the stratopause. From the results, it appears that gravity wave "breaking" generally occurs at considerably higher altitudes in the tropics than in midlatitudes. There is also a fairly clear indication of higher wave breaking levels in summer than in winter, at least at high latitudes.

2005 ◽  
Vol 62 (5) ◽  
pp. 1480-1496 ◽  
Author(s):  
Zachary A. Eitzen ◽  
David A. Randall

Abstract This study uses a numerical model to simulate deep convection both in the Tropics over the ocean and the midlatitudes over land. The vertical grid that was used extends into the stratosphere, allowing for the simultaneous examination of the convection and the vertically propagating gravity waves that it generates. A large number of trajectories are used to evaluate the behavior of tracers in the troposphere, and it is found that the tracers can be segregated into different types based upon their position in a diagram of normalized vertical velocity versus displacement. Conditional sampling is also used to identify updrafts in the troposphere and calculate their contribution to the kinetic energy budget of the troposphere. In addition, Fourier analysis is used to characterize the waves in the stratosphere; it was found that the waves simulated in this study have similarities to those observed and simulated by other researchers. Finally, this study examines the wave energy flux as a means to provide a link between the tropospheric behavior of the convection and the strength of the waves in the stratosphere.


2021 ◽  
Author(s):  
Wolfgang Woiwode ◽  
Andreas Dörnbrack ◽  
Felix Friedl-Vallon ◽  
Markus Geldenhuys ◽  
Andreas Giez ◽  
...  

<p>The combination of the airborne GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) and ALIMA (Airborne LIdar for Middle Atmosphere research) instruments allows for probing of temperature perturbations associated with gravity waves within the range from the troposphere up to the mesosphere. Both instruments were part of the scientific payload of the German HALO (High Altitude and LOng Range Research Aircraft) during the SouthTRAC-GW (Southern hemisphere Transport, Dynamics, and Chemistry - Gravity Waves) mission, aiming at probing gravity waves in the hotspot region around South America and the Antarctic peninsula. For the research flight on 16 September 2019, complex temperature perturbations attributed to internal gravity waves were forecasted well above the Atlantic to the south-west of Buenos Aires, Argentina. The forecasted temperature perturbations were located in a region where the polar front jet stream met with the subtropical jet, with the polar night jet above. We present temperature perturbations observed by GLORIA and ALIMA during the discussed flight and compare the data with ECMWF IFS (European Centre for Medium-Range Weather Forecasts – Integrated Forecasting System) high-resolution deterministic forecasts, aiming at validating the IFS data and identifying sources of the observed wave patterns.</p>


2004 ◽  
Vol 22 (11) ◽  
pp. 3889-3898 ◽  
Author(s):  
N. M. Gavrilov ◽  
S. Fukao

Abstract. It is shown with a numerical simulation that a sharp increase in the vertical temperature gradient and Brunt-Väisälä frequency near the tropopause may produce an increase in the amplitudes of internal gravity waves (IGWs) propagating upward from the troposphere, wave breaking and generation of stronger turbulence. This may enhance the transport of admixtures between the troposphere and stratosphere in the middle latitudes. Turbulent diffusion coefficient calculated numerically and measured with the MU radar are of 1-10m2/s in different seasons in Shigaraki, Japan (35° N, 136° E). These values lead to the estimation of vertical ozone flux from the stratosphere to the troposphere of (1-10)x1014, which may substantially add to the usually supposed ozone downward transport with the general atmospheric circulation. Therefore, local enhancements of IGW intensity and turbulence at tropospheric altitudes over mountains due to their orographic excitation and due to other wave sources may lead to the changes in tropospheric and total ozone over different regions.


2010 ◽  
Vol 67 (8) ◽  
pp. 2504-2519 ◽  
Author(s):  
Daniel Ruprecht ◽  
Rupert Klein ◽  
Andrew J. Majda

Abstract Starting from the conservation laws for mass, momentum, and energy together with a three-species bulk microphysics model, a model for the interaction of internal gravity waves and deep convective hot towers is derived using multiscale asymptotic techniques. From the leading-order equations, a closed model for the large-scale flow is obtained analytically by applying horizontal averages conditioned on the small-scale hot towers. No closure approximations are required besides adopting the asymptotic limit regime on which the analysis is based. The resulting model is an extension of the anelastic equations linearized about a constant background flow. Moist processes enter through the area fraction of saturated regions and through two additional dynamic equations describing the coupled evolution of the conditionally averaged small-scale vertical velocity and buoyancy. A two-way coupling between the large-scale dynamics and these small-scale quantities is obtained: moisture reduces the effective stability for the large-scale flow, and microscale up- and downdrafts define a large-scale averaged potential temperature source term. In turn, large-scale vertical velocities induce small-scale potential temperature fluctuations due to the discrepancy in effective stability between saturated and nonsaturated regions. The dispersion relation and group velocity of the system are analyzed and moisture is found to have several effects: (i) it reduces vertical energy transport by waves, (ii) it increases vertical wavenumbers but decreases the slope at which wave packets travel, (iii) it introduces a new lower horizontal cutoff wavenumber in addition to the well-known high wavenumber cutoff, and (iv) moisture can cause critical layers. Numerical examples reveal the effects of moisture on steady-state and time-dependent mountain waves in the present hot-tower regime.


2020 ◽  
Vol 77 (10) ◽  
pp. 3601-3618
Author(s):  
B. Quinn ◽  
C. Eden ◽  
D. Olbers

AbstractThe model Internal Wave Dissipation, Energy and Mixing (IDEMIX) presents a novel way of parameterizing internal gravity waves in the atmosphere. IDEMIX is based on the spectral energy balance of the wave field and has previously been successfully developed as a model for diapycnal diffusivity, induced by internal gravity wave breaking in oceans. Applied here for the first time to atmospheric gravity waves, integration of the energy balance equation for a continuous wave field of a given spectrum, results in prognostic equations for the energy density of eastward and westward gravity waves. It includes their interaction with the mean flow, allowing for an evolving and local description of momentum flux and gravity wave drag. A saturation mechanism maintains the wave field within convective stability limits, and a closure for critical-layer effects controls how much wave flux propagates from the troposphere into the middle atmosphere. Offline comparisons to a traditional parameterization reveal increases in the wave momentum flux in the middle atmosphere due to the mean-flow interaction, resulting in a greater gravity wave drag at lower altitudes. Preliminary validation against observational data show good agreement with momentum fluxes.


2010 ◽  
Vol 6 (S271) ◽  
pp. 363-364
Author(s):  
Adrian J. Barker ◽  
Gordon I. Ogilvie

AbstractInternal gravity waves are excited at the interface of convection and radiation zones of a solar-type star, by the tidal forcing of a short-period planet. The fate of these waves as they approach the centre of the star depends on their amplitude. We discuss the results of numerical simulations of these waves approaching the centre of a star, and the resulting evolution of the spin of the central regions of the star and the orbit of the planet. If the waves break, we find efficient tidal dissipation, which is not present if the waves perfectly reflect from the centre. This highlights an important amplitude dependence of the (stellar) tidal quality factor Q′, which has implications for the survival of planets on short-period orbits around solar-type stars, with radiative cores.


2016 ◽  
Vol 789 ◽  
pp. 93-126 ◽  
Author(s):  
Robert S. Arthur ◽  
Oliver B. Fringer

We use the results of a direct numerical simulation (DNS) with a particle-tracking model to investigate three-dimensional transport by breaking internal gravity waves on slopes. Onshore transport occurs within an upslope surge of dense fluid after breaking. Offshore transport occurs due to an intrusion of mixed fluid that propagates offshore and resembles an intermediate nepheloid layer (INL). Entrainment of particles into the INL is related to irreversible mixing of the density field during wave breaking. Maximum onshore and offshore transport are calculated as a function of initial particle position, and can be of the order of the initial wave length scale for particles initialized within the breaking region. An effective cross-shore dispersion coefficient is also calculated, and is roughly three orders of magnitude larger than the molecular diffusivity within the breaking region. Particles are transported laterally due to turbulence that develops during wave breaking, and this lateral spreading is quantified with a lateral turbulent diffusivity. Lateral turbulent diffusivity values calculated using particles are elevated by more than one order of magnitude above the molecular diffusivity, and are shown to agree well with turbulent diffusivities estimated using a generic length scale turbulence closure model. Based on a favourable comparison of DNS results with those of a similar two-dimensional case, we use two-dimensional simulations to extend our cross-shore transport results to additional wave amplitude and bathymetric slope conditions.


Sign in / Sign up

Export Citation Format

Share Document