Modeling the propagation of atmospheric waves from various tropospheric disturbances and studying their influence on the upper atmosphere

Author(s):  
Yuliya Kurdyaeva ◽  
Olga Borchevkina ◽  
Sergey Kshevetskii

<p>The atmosphere and ionosphere are a complex dynamic system, which is affected by sources, caused both by internal processes and external ones. It is known that atmospheric waves propagating from the troposphere to the upper atmosphere make a significant contribution to the state of this system. One of the regular sources of such waves are various tropospheric disturbances caused, for example, by meteorological processes. Numerical modeling is an effective tool for studying these processes and the effects they cause. However, a number of problems arise, while setting up numerical experiments. The first is that most atmospheric models use hydrostatic approximation (which does not allow the resolution of small-scale perturbations) and work for a limited range of heights (which does not allow studying the relationship between the lower and upper atmosphere). This demands an accurate selection of the model in accordance with the stated research goals. The second problem is the difficulty of direct definition of the wave tropospheric sources, that was mentioned before, due to the lack of experimental information for their detailed description. The authors proposed, researched and tested a way to solve this problem. It was shown that the solution of the problem of waves propagation from a certain tropospheric source is completely determined by the pressure field at the surface of the Earth. This work is devoted to solving various problems using this approach.</p><p>This study presents the results of calculations of the propagation of infrasound and internal gravity waves from tropospheric disturbances given by pressure variations at the surface of the Earth. The experimental data associated with various meteorological events and the passage of the solar terminator were obtained both directly - by a network of microbarographs in the studied region, and indirectly - based on the data from the LIDAR signal intensity and temperature changes in the coastal region. The calculations were done using the non-hydrostatic numerical model “AtmoSym”. The characteristics of atmospheric waves generated by such sources are estimated. The effect from a tropospheric sources on the state of the upper atmosphere and ionosphere is investigated. The physical processes that determine the change in atmospheric parameters are discussed.  It is shown that the main contribution from wave disturbances generated by meteorological sources belongs to infrasound. Infrasound and internal gravity waves can be sources of travelling wave packets and can also cause a sporadic E-layer.</p><p>The study was funded by RFBR and Kaliningrad region according to the research project  19-45-390005 (Y. Kurdyaeva) and  RFBR to the research project  18-05-00184 (O. Borchevkina).</p>

Author(s):  
Petra Koucká Knížová ◽  
Jan Laštovička ◽  
Daniel Kouba ◽  
Zbyšek Mošna ◽  
Katerina Podolská ◽  
...  

The ionosphere represents part of the upper atmosphere. Its variability is observed on a wide-scale temporal range from minutes, or even shorter, up to scales of the solar cycle and secular variations of solar energy input. Ionosphere behavior is predominantly determined by solar and geomagnetic forcing. However, the lower-lying atmospheric regions can contribute significantly to the resulting energy budget. The energy transfer between distant atmospheric parts happens due to atmospheric waves that propagate from their source region up to ionospheric heights. Experimental observations show the importance of the involvement of the lower atmosphere in ionospheric variability studies in order to accurately capture small-scale features of the upper atmosphere. In the Part I Coupling, we provide a brief overview of the influence of the lower atmosphere on the ionosphere and summarize the current knowledge. In the Part II Coupling Evidences Within Ionospheric Plasma—Experiments in Midlatitudes, we demonstrate experimental evidence from mid-latitudes, particularly those based on observations by instruments operated by the Institute of Atmospheric Physics, Czech Academy of Sciences. The focus will mainly be on coupling by atmospheric waves.


2010 ◽  
Vol 67 (8) ◽  
pp. 2504-2519 ◽  
Author(s):  
Daniel Ruprecht ◽  
Rupert Klein ◽  
Andrew J. Majda

Abstract Starting from the conservation laws for mass, momentum, and energy together with a three-species bulk microphysics model, a model for the interaction of internal gravity waves and deep convective hot towers is derived using multiscale asymptotic techniques. From the leading-order equations, a closed model for the large-scale flow is obtained analytically by applying horizontal averages conditioned on the small-scale hot towers. No closure approximations are required besides adopting the asymptotic limit regime on which the analysis is based. The resulting model is an extension of the anelastic equations linearized about a constant background flow. Moist processes enter through the area fraction of saturated regions and through two additional dynamic equations describing the coupled evolution of the conditionally averaged small-scale vertical velocity and buoyancy. A two-way coupling between the large-scale dynamics and these small-scale quantities is obtained: moisture reduces the effective stability for the large-scale flow, and microscale up- and downdrafts define a large-scale averaged potential temperature source term. In turn, large-scale vertical velocities induce small-scale potential temperature fluctuations due to the discrepancy in effective stability between saturated and nonsaturated regions. The dispersion relation and group velocity of the system are analyzed and moisture is found to have several effects: (i) it reduces vertical energy transport by waves, (ii) it increases vertical wavenumbers but decreases the slope at which wave packets travel, (iii) it introduces a new lower horizontal cutoff wavenumber in addition to the well-known high wavenumber cutoff, and (iv) moisture can cause critical layers. Numerical examples reveal the effects of moisture on steady-state and time-dependent mountain waves in the present hot-tower regime.


2020 ◽  
Author(s):  
Nikolai M. Gavrilov ◽  
Sergej P. Kshevetskii

<p>Acoustic-gravity waves (AGWs) measuring at big heights may be generated in the troposphere and propagate upwards. A high-resolution three-dimensional numerical model was developed for simulating nonlinear AGWs propagating from the ground to the upper atmosphere. The model algorithms are based on the finite-difference analogues of the main conservation laws. This methodology let us obtaining the physically correct generalized wave solutions of the nonlinear equations. Horizontally moving sinusoidal structures of vertical velocity on the ground are used for the AGW excitation in the model. Numerical simulations were made in an atmospheric region having horizontal dimensions up to several thousand kilometers and the height extention up to 500 km. Vertical distributions of the mean temperature, density, molecular viscosity and thermal conductivity are specified using standard models of the atmosphere.</p><p>Simulations were made for different horizontal wavelengths, amplitudes and speeds of the wave sources at the ground. After “switch on” the tropospheric wave source, an initial AGW pulse very quickly (for several minutes) could propagate to heights up to 100 km and above. AGW amplitudes increase with height and waves may break down in the middle and upper atmosphere. Wave instability and dissipation may lead to formations of wave accelerations of the mean flow and to producing wave-induced jet flows in the middle and upper atmosphere. Nonlinear interactions may lead to instabilities of the initial wave and to the creation of smaller-scale perturbations. These perturbations may increase temperature and wind gradients and could enhance the wave energy dissipation.</p><p>In this study, the wave sources contain a superposition of two AGW modes with different periods, wavelengths and phase speeds. Longer-period AGW modes served as the background conditions for the shorter-period wave modes. Thus, the larger-scale AGWs can modulate amplitudes of small-scale waves. In particular, interactions of two wave modes could sharp vertical temperature gradients and make easier the wave breaking and generating  turbulence. On the other hand, small-wave wave modes might increase dissipation and modify the larger-scale modes.This study was partially supported by the Russian Basic Research Foundation (# 17-05-00458).</p>


2021 ◽  
Author(s):  
Robert Vicari

<p>Highly idealized model studies suggest that convectively generated internal gravity waves in the troposphere with horizontal wavelengths on the order of a few kilometers may affect the lifetime, spacing, and depth of clouds and convection. To answer whether such a convection-wave coupling occurs in the real atmosphere, one needs to find corresponding events in observations. In general, the study of high-frequency internal gravity wave-related phenomena in the troposphere is a challenging task because they are usually small-scale and intermittent. To overcome case-by-case studies, it is desirable to have an automatic method to analyze as much data as possible and provide enough independent and diverse evidence.<br>Here, we focus on brightness temperature satellite images, in particular so-called satellite water vapor channels. These channels measure the radiation at wavelengths corresponding to the energy emitted by water vapor and provide cloud-independent observations of internal gravity waves, in contrast to visible and other infrared satellite channels where one relies on the wave impacts on clouds. In addition, since these water vapor channels are sensitive to certain vertical layers in the troposphere, combining the images also reveals some vertical structure of the observed waves.<br>We propose an algorithm based on local Fourier analyses to extract information about high-frequency wave patterns in given brightness temperature images. This method allows automatic detection and analysis of many wave patterns in a given domain at once, resulting in a climatology that provides an initial observational basis for further research. Using data from the instrument ABI on board the satellite GOES-16 during the field campaign EUREC<sup>4</sup>A, we demonstrate the capabilities and limitations of the method. Furthermore, we present the respective climatology of the detected waves and discuss approaches based on this to address the initial question.</p>


2015 ◽  
Vol 777 ◽  
pp. 260-290 ◽  
Author(s):  
Oleg A. Godin

Ray and Wentzel–Kramers–Brillouin (WKB) approximations have long been important tools in understanding and modelling propagation of atmospheric waves. However, contradictory claims regarding the applicability and uniqueness of the WKB approximation persist in the literature. Here, we consider linear acoustic–gravity waves (AGWs) in a layered atmosphere with horizontal winds. A self-consistent version of the WKB approximation is systematically derived from first principles and compared to ad hoc approximations proposed earlier. The parameters of the problem are identified that need to be small to ensure the validity of the WKB approximation. Properties of low-order WKB approximations are discussed in some detail. Contrary to the better-studied cases of acoustic waves and internal gravity waves in the Boussinesq approximation, the WKB solution contains the geometric, or Berry, phase. The Berry phase is generally non-negligible for AGWs in a moving atmosphere. In other words, knowledge of the AGW dispersion relation is not sufficient for calculation of the wave phase.


1984 ◽  
Vol 62 (10) ◽  
pp. 963-967 ◽  
Author(s):  
Kevin Hamilton

There has recently been a great deal of interest in the possibility that vertically propagating internal gravity waves may be dissipated by small-scale convective or shear instabilities in the upper stratosphere and mesosphere. In the present study, a very simple analysis of about 3000 rocket soundings of temperature and wind at several stations between 8°N and 59°N was conducted in order to obtain quantitative estimates of the frequency of occurrence of dynamically unstable conditions as a function of height, latitude, and season. It was found that in about one-third of the profiles, the local Richardson number dropped below 0.25 at some level near the stratopause. From the results, it appears that gravity wave "breaking" generally occurs at considerably higher altitudes in the tropics than in midlatitudes. There is also a fairly clear indication of higher wave breaking levels in summer than in winter, at least at high latitudes.


2016 ◽  
Vol 2 (3) ◽  
pp. 99-105 ◽  
Author(s):  
Павел Васильев ◽  
Pavel Vasilyev ◽  
Иван Карпов ◽  
Ivan Karpov ◽  
Сергей Кшевецкий ◽  
...  

We present results of modeling of the effect of internal gravity waves (IGW), excited in the region of development of a sudden stratospheric warming (SSW), on upper atmospheric conditions. In the numerical experiment, we use a two-dimensional model of propagation of atmospheric waves, taking into account dissipative and nonlinear processes accompanying wave propagation. As a source of disturbances we consider temperature and density disturbances in the stratosphere during SSWs. Amplitude and frequency characteristics of the source of disturbances are estimated from observations and IGW theory. Numerical calculations showed that waves generated at stratospheric heights during SSW can cause temperature changes in the upper atmosphere. Maximum relative disturbances, caused by such waves, with respect to quiet conditions are observed at 100–200 km. Disturbances of the upper atmosphere in turn have an effect on the dynamics of charged component in the ionosphere and can contribute to observable ionospheric effects of SSW.


2016 ◽  
Vol 2 (3) ◽  
pp. 69-73
Author(s):  
Павел Васильев ◽  
Pavel Vasilyev ◽  
Иван Карпов ◽  
Ivan Karpov ◽  
Сергей Кшевецкий ◽  
...  

We present results of modeling of the effect of internal gravity waves (IGW), excited in the region of development of a sudden stratospheric warming (SSW), on upper atmospheric conditions. In the numerical experiment, we use a two-dimensional model of propagation of atmospheric waves, taking into account dissipative and nonlinear processes accompanying wave propagation. As a source of disturbances we consider temperature and density disturbances in the stratosphere during SSWs. Amplitude and frequency characteristics of the source of disturbances are estimated from observations and IGW theory. Numerical calculations showed that waves generated at stratospheric heights during SSW can cause temperature changes in the upper atmosphere. Maximum relative disturbances, generated by such waves, with respect to quiet conditions are observed at 100–200 km. Disturbances of the upper atmosphere in turn have an effect on dynamics of a charged component in the ionosphere and can contribute to observable ionospheric effects of SSW.


Sign in / Sign up

Export Citation Format

Share Document