Some Topics on Coxeter Groups and Weyl Groups

Author(s):  
Nagayoshi Iwahori
Keyword(s):  
10.37236/1871 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
John R. Stembridge

It is a well-known theorem of Deodhar that the Bruhat ordering of a Coxeter group is the conjunction of its projections onto quotients by maximal parabolic subgroups. Similarly, the Bruhat order is also the conjunction of a larger number of simpler quotients obtained by projecting onto two-sided (i.e., "double") quotients by pairs of maximal parabolic subgroups. Each one-sided quotient may be represented as an orbit in the reflection representation, and each double quotient corresponds to the portion of an orbit on the positive side of certain hyperplanes. In some cases, these orbit representations are "tight" in the sense that the root system induces an ordering on the orbit that yields effective coordinates for the Bruhat order, and hence also provides upper bounds for the order dimension. In this paper, we (1) provide a general characterization of tightness for one-sided quotients, (2) classify all tight one-sided quotients of finite Coxeter groups, and (3) classify all tight double quotients of affine Weyl groups.


10.37236/9037 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Hiranya Kishore Dey ◽  
Sivaramakrishnan Sivasubramanian

The Eulerian polynomial $A_n(t)$ enumerating descents in $\mathfrak{S}_n$ is known to be gamma positive for all $n$. When enumeration is done over the type B and type D Coxeter groups, the type B and type D Eulerian polynomials are also known to be gamma positive for all $n$. We consider $A_n^+(t)$ and $A_n^-(t)$, the polynomials which enumerate descents in the alternating group $\mathcal{A}_n$ and in $\mathfrak{S}_n - \mathcal{A}_n$ respectively.  We show the following results about $A_n^+(t)$ and $A_n^-(t)$: both polynomials are gamma positive iff $n \equiv 0,1$ (mod 4). When $n \equiv 2,3$ (mod 4), both polynomials are not palindromic. When $n \equiv 2$ (mod 4), we show that {\sl two} gamma positive summands add up to give $A_n^+(t)$ and $A_n^-(t)$. When $n \equiv 3$ (mod 4), we show that {\sl three} gamma positive summands add up to give both $A_n^+(t)$ and $A_n^-(t)$.  We show similar gamma positivity results about the descent based type B and type D Eulerian polynomials when enumeration is done over the positive elements in the respective Coxeter groups. We also show that the polynomials considered in this work are unimodal.


2008 ◽  
Vol 18 (04) ◽  
pp. 779-802 ◽  
Author(s):  
EDDY GODELLE

In linear algebraic monoid theory, the Renner monoids play the role of the Weyl groups in linear algebraic group theory. It is well known that Weyl groups are Coxeter groups, and that we can associate a Hecke algebra and an Artin–Tits group to each Coxeter group. The question of the existence of a Hecke algebra associated with each Renner monoid has been positively answered. In this paper we discuss the question of the existence of an equivalent of the Artin–Tits groups in the framework of Renner monoids. We consider the seminal case of the rook monoid and introduce a new length function.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Fabrizio Caselli ◽  
Roberta Fulci

International audience A finite subgroup $G$ of $GL(n,\mathbb{C})$ is involutory if the sum of the dimensions of its irreducible complex representations is given by the number of absolute involutions in the group, i.e. elements $g \in G$ such that $g \bar{g}=1$, where the bar denotes complex conjugation. A uniform combinatorial model is constructed for all non-exceptional irreducible complex reflection groups which are involutory including, in particular, all infinite families of finite irreducible Coxeter groups. If $G$ is a classical Weyl group this result is much refined in a way which is compatible with the Robinson-Schensted correspondence on involutions. Un sous-groupe fini $G$ de GL(n,ℂ) est dit involutoire si la somme des dimensions de ses représentations irréductibles complexes est donné par le nombre de involutions absolues dans le groupe, c'est-a-dire le nombre de éléments $g \in G$ tels que $g \bar{g}=1$, où le bar dénote la conjugaison complexe. Un modèle combinatoire uniforme est construit pour tous les groupes de réflexions complexes irréductibles qui sont involutoires, en comprenant, toutes les familles de groupes de Coxeter finis irréductibles. Si $G$ est un groupe de Weyl ce résultat peut se raffiner d'une manière compatible avec la correspondance de Robinson-Schensted sur les involutions.


Author(s):  
Nazife Özdeş Koca ◽  
Mehmet Koca ◽  
Muna Al-Sawafi

We construct the fcc (face centered cubic), bcc (body centered cubic) and sc (simple cubic) lattices as the root and the weight lattices of the affine extended Coxeter groups W(A3) and W(B3)=Aut(A3). It is naturally expected that these rank-3 Coxeter-Weyl groups define the point tetrahedral symmetry and the octahedral symmetry of the cubic lattices which have extensive applications in material science. The imaginary quaternionic units are used to represent the root systems of the rank-3 Coxeter-Dynkin diagrams which correspond to the generating vectors of the lattices of interest. The group elements are written explicitly in terms of pairs of quaternions which constitute the binary octahedral group. The constructions of the vertices of the Wigner-Seitz cells have been presented in terms of quaternionic imaginary units. This is a new approach which may link the lattice dynamics with quaternion physics. Orthogonal projections of the lattices onto the Coxeter plane represent the square and honeycomb lattices.   


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Brant Jones

International audience The Kazhdan-Lusztig polynomials for finite Weyl groups arise in representation theory as well as the geometry of Schubert varieties. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in general. Deodhar has given a framework, which generally involves recursion, to express the Kazhdan-Lusztig polynomials in a very attractive form. We use a new kind of pattern-avoidance that can be defined for general Coxeter groups to characterize when Deodhar's algorithm yields a non-recursive combinatorial formula for Kazhdan-Lusztig polynomials $P_{x,w}(q)$ of finite Weyl groups. This generalizes results of Billey-Warrington which identified the $321$-hexagon-avoiding permutations, and Fan-Green which identified the fully-tight Coxeter groups. We also show that the leading coefficient known as $\mu (x,w)$ for these Kazhdan―Lusztig polynomials is always either $0$ or $1$. Finally, we generalize the simple combinatorial formula for the Kazhdan―Lusztig polynomials of the $321$-hexagon-avoiding permutations to the case when $w$ is hexagon avoiding and maximally clustered. Les polynômes de Kazhdan-Lusztig $P_{x,w}(q)$ des groupes de Weyl finis apparaissent en théorie des représentations, ainsi qu’en géométrie des variétés de Schubert. Il a été démontré peu après leur introduction qu’ils avaient des coefficients entiers positifs, mais on ne connaît toujours pas d’interprétation combinatoire simple de cette propriété dans le cas général. Deodhar a proposé un cadre donnant un algorithme, en général récursif, calculant des formules attractives pour les polynômes de Kazhdan-Lusztig. Billey-Warrington ont démontré que cet algorithme est non récursif lorsque$w$ évite les hexagones et les $321$ et qu’il donne des formules combinatoires simples. Nous introduisons une notion d’évitement de schémas dansles groupes de Coxeter quelconques nous permettant de généraliser les résultats de Billey-Warrington à tout groupe de Weyl fini. Nous montrons que le coefficient de tête $\mu (x,w)$ de ces polynômes de Kazhdan-Lusztig est toujours $0$ ou $1$. Cela généralise aussi des résultats de Fan-Greenqui identifient les groupes de Coxeter complètement serrés. Enfin, en type $A$, nous obtenons une classe plus large de permutations évitant la récursion.


2014 ◽  
Vol 70 (6) ◽  
pp. 605-615 ◽  
Author(s):  
Nazife O. Koca ◽  
Mehmet Koca ◽  
Ramazan Koc

One possible way to obtain the quasicrystallographic structure is the projection of the higher-dimensional lattice into two- or three-dimensional subspaces. Here a general technique applicable to any higher-dimensional lattice is introduced. The Coxeter number and the integers of the Coxeter exponents of a Coxeter–Weyl group play a crucial role in determining the plane onto which the lattice is to be projected. The quasicrystal structures display the dihedral symmetry of order twice that of the Coxeter number. The eigenvectors and the corresponding eigenvalues of the Cartan matrix are used to determine the set of orthonormal vectors inn-dimensional Euclidean space which lead to suitable choices for the projection subspaces. The maximal dihedral subgroup of the Coxeter–Weyl group is identified to determine the symmetry of the quasicrystal structure. Examples are given for 12-fold symmetric quasicrystal structures obtained by projecting the higher-dimensional lattices determined by the affine Coxeter–Weyl groupsWa(F4),Wa(B6) andWa(E6). These groups share the same Coxeter numberh= 12 with different Coxeter exponents. The dihedral subgroupD12of the Coxeter groups can be obtained by defining two generatorsR1andR2as the products of generators of the Coxeter–Weyl groups. The reflection generatorsR1andR2operate in the Coxeter planes where the Coxeter elementR1R2of the Coxeter–Weyl group represents the rotation of order 12. The canonical (strip, equivalently, cut-and-project technique) projections of the lattices determine the nature of the quasicrystallographic structures with 12-fold symmetry as well as the crystallographic structures with fourfold and sixfold symmetry. It is noted that the quasicrystal structures obtained from the latticesWa(F4) andWa(B6) are compatible with some experimental results.


2014 ◽  
Vol 70 (4) ◽  
pp. 358-363 ◽  
Author(s):  
Marzena Szajewska

This paper considers Platonic solids/polytopes in the real Euclidean space {\bb R}^n of dimension 3 ≤n< ∞. The Platonic solids/polytopes are described together with their faces of dimensions 0 ≤d≤n− 1. Dual pairs of Platonic polytopes are considered in parallel. The underlying finite Coxeter groups are those of simple Lie algebras of typesAn,Bn,Cn,F4, also called the Weyl groups or, equivalently, crystallographic Coxeter groups, and of non-crystallographic Coxeter groupsH3,H4. The method consists of recursively decorating the appropriate Coxeter–Dynkin diagram. Each recursion step provides the essential information about faces of a specific dimension. If, at each recursion step, all of the faces are in the same Coxeter group orbit,i.e.are identical, the solid is called Platonic. The main result of the paper is found in Theorem 2.1 and Propositions 3.1 and 3.2.


10.37236/6741 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Sara C. Billey ◽  
Matjaž Konvalinka ◽  
T. Kyle Petersen ◽  
William Slofstra ◽  
Bridget E. Tenner

Parabolic subgroups $W_I$ of Coxeter systems $(W,S)$, as well as their ordinary and double quotients $W / W_I$ and $W_I \backslash W / W_J$, appear in many contexts in combinatorics and Lie theory, including the geometry and topology of generalized flag varieties and the symmetry groups of regular polytopes. The set of ordinary cosets $w W_I$, for $I \subseteq S$, forms the Coxeter complex of $W$, and is well-studied. In this article we look at a less studied object: the set of all double cosets $W_I w W_J$ for $I, J \subseteq S$. Double cosets are not uniquely presented by triples $(I,w,J)$. We describe what we call the lex-minimal presentation, and prove that there exists a unique such object for each double coset. Lex-minimal presentations are then used to enumerate double cosets via a finite automaton depending on the Coxeter graph for $(W,S)$. As an example, we present a formula for the number of parabolic double cosets with a fixed minimal element when $W$ is the symmetric group $S_n$ (in this case, parabolic subgroups are also known as Young subgroups). Our formula is almost always linear time computable in $n$, and we show how it can be generalized to any Coxeter group with little additional work. We spell out formulas for all finite and affine Weyl groups in the case that $w$ is the identity element.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Pietro Mongelli

International audience We give closed combinatorial product formulas for Kazhdan–Lusztig poynomials and their parabolic analogue of type $q$ in the case of boolean elements, introduced in [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], in Coxeter groups whose Coxeter graph is a tree. Such formulas involve Catalan numbers and use a combinatorial interpretation of the Coxeter graph of the group. In the case of classical Weyl groups, this combinatorial interpretation can be restated in terms of statistics of (signed) permutations. As an application of the formulas, we compute the intersection homology Poincaré polynomials of the Schubert varieties of boolean elements. Nous donnons des formules combinatoires pour les polynômes de Kazhdan-Lusztig et leurs analogues paraboliques de type $q$ pour les éléments booléens, introduite dans [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], dans les groupes de Coxeter dont le graphe de Coxeter est un arbre. Ces formules utilisent les nombres de Catalan et une interprétation combinatoire des graphes du groupe de Coxeter. Dans le cas des groupes de Weyl classiques, cette interprétation combinatoire peut être reformulée en termes de statistiques de permutations avec signe. Avec ces formules, on peut calculer le polynôme de l’intersection homologie de Poincaré pour la variété de Schubert de éléments booléens.


Sign in / Sign up

Export Citation Format

Share Document