Real time optical correction using electrostatically actuated MEMS devices

1999 ◽  
Vol 46 (2-3) ◽  
pp. 91-101 ◽  
Author(s):  
M. Horenstein ◽  
T. Bifano ◽  
S. Pappas ◽  
J. Perreault ◽  
R. Krishnamoorthy-Mali
Author(s):  
Timothy Moulton ◽  
G. K. Ananthasuresh

Abstract There exists a need to stabilize the electrostatic actuation commonly used in Micro-Electro-Mechanical Systems (MEMS). Most electrostatically actuated MEMS devices act as variable capacitors with varying gap between the charged conductors. Electrostatic force in these devices is a nonlinear attractive force between the conductors resulting in a complex dynamic system. These systems are stable for only a small portion of the initial gap. In this paper a design method is presented for electrostatic micro-mirrors with improved stability. Controllable, stable electrostatic actuation can be achieved through surface contact between the two conductors. Once in contact with the surface, the compliance of the structure is used to stabilize the electrostatic actuation over a long range of motion. Beam based variable angle mirrors were designed and fabricated using the Multi-User MEMS Process at MCNC technology center. The design methods for stable electrostatic actuation were tested on these mirrors. Some characteristics are noted and their implementation into future designs is discussed.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001564-001593
Author(s):  
Chong Li ◽  
Yixuan Wu ◽  
Haoyue Yang ◽  
Luke L. Jenkins ◽  
Robert N. Dean ◽  
...  

The transmissibility reveals two very useful characteristics of a micro-electro-mechanical systems (MEMS) device, the resonant frequency and the mechanical quality factor. Real time knowledge on these two important factors can enhance application performance or avoid potential problems from environmental disturbances due to fabrication tolerances and the resulting operational differences in otherwise identical devices. Expensive laboratory equipment is typically used to measure the transmissibility. However, these test systems are not readily adaptable to field use. Therefore, it is important to be able to measure the transmissibility using a real time technique with a simplified test setup. This study proposes a technique that can compute the transmissibility in real time using a low cost microcontroller. This technique utilizes two laser vibrometers to detect the input and output motions of the proof mass in a MEMS device, which are fed to high speed 500 KHz analog to digital converters (ADC) in the microcontroller. A filtering step is performed to decrease noise. After the sampling and pre-filtering, a Fast Fourier Transform (FFT) is performed to convert the time-domain signals to frequency domain signals. The amplitude of the output signal at each frequency is divided by the amplitude of the corresponding input signal at each frequency to obtain the transmissibility. To overcome the difficulties resulting from measurement and quantization noise, a recursive calculating algorithm and a de-quantization filter are introduced. The recursive calculating process guarantees that the system updates the results continually, which results in a transmissibility plot covering the entire bandwidth. The de-quantization filter considers the validity of the data and performs the transmissibility division step accordingly. A cantilevered structure was chosen as the device-under-test to verify and evaluate this technique. The cantilevered device was attached to an electromechanical shaker system for vibratory stimulation. Two laser vibrometers were used to detect the input and output motion and this data was fed into a microcontroller. The microcontroller was STM32F407, which is 32-bit and 168 MHz controller. The tests demonstrated that this technique can measure the transmissibility and therefore the resonant frequency and mechanical quality factor accurately compared to a professional signal analyzer.


2010 ◽  
Vol 19 (1) ◽  
pp. 83-98 ◽  
Author(s):  
Pranav Agarwal ◽  
Deepak R. Sahoo ◽  
Abu Sebastian ◽  
Haris Pozidis ◽  
Murti V. Salapaka

Sensors ◽  
2007 ◽  
Vol 7 (5) ◽  
pp. 760-796 ◽  
Author(s):  
Wen-Ming Zhang ◽  
Guang Meng ◽  
Di Chen

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Chen Wang ◽  
Yuan Wang ◽  
Weidong Fang ◽  
Xiaoxiao Song ◽  
Aojie Quan ◽  
...  

AbstractThis paper describes a novel electrostatically actuated microgripper with freeform geometries designed by a genetic algorithm. This new semiautomated design methodology is capable of designing near-optimal MEMS devices that are robust to fabrication tolerances. The use of freeform geometries designed by a genetic algorithm significantly improves the performance of the microgripper. An experiment shows that the designed microgripper has a large displacement (91.5 μm) with a low actuation voltage (47.5 V), which agrees well with the theory. The microgripper has a large actuation displacement and can handle micro-objects with a size from 10 to 100 μm. A grasping experiment on human hair with a diameter of 77 μm was performed to prove the functionality of the gripper. The result confirmed the superior performance of the new design methodology enabling freeform geometries. This design method can also be extended to the design of many other MEMS devices.


Author(s):  
D. H. S. Maithripala ◽  
Jordan M. Berg ◽  
W. P. Dayawansa

Electrostatically-actuated MEMS devices suffer from a non-linear bifurcation phenomenon called “snap-through” or “pull-in.” This bifurcation severely limits the operating region of such devices. Control schemes have been proposed to eliminate snapthrough. These stabilizing controllers can be implemented using relatively straight forward current and voltage measurements. However, in order to alter the transient behavior of the system, for example to reduce settling time, or to minimize the likelihood of contacting the bottom electrode, the controller should also include terms dependent on the velocity of the movable electrode. Direct sensing of this velocity during normal device operation is typically not feasible. In this paper we show how the electrode velocity may be indirectly sensed using only capacitance and voltage measurements. Our approach is based on well known techniques of nonlinear observer design, and provides arbitrary fast linear error dynamics. Simulation results show excellent performance.


2009 ◽  
Vol 19 (03) ◽  
pp. 1007-1022 ◽  
Author(s):  
V. Y. TAFFOTI YOLONG ◽  
P. WOAFO

The dynamical behavior of micro-electro-mechanical systems (MEMS) with electrostatic coupling is studied. A nonlinear modal analysis approach is applied to decompose the partial differential equation into a set of ordinary differential equations. The stability analysis of the equilibrium points is investigated. The amplitudes of the harmonic oscillatory states in the triple resonant states are obtained and discussed. Chaotic behavior is investigated using bifurcations diagram and the largest Lyapunov exponent. The dynamics of the MEMS with multiple functions in series is also investigated as well as the transitions boundaries for the complete synchronization state in a shift-invariant set of coupled MEMS devices.


Author(s):  
Manish M. Joglekar ◽  
Kedar Y. Hardikar ◽  
Dnyanesh N. Pawaskar

The operation of electrostatically actuated MEMS devices involves an inherent phenomenon termed as the pull-in instability which reduces their useful travel range. Accurate prediction of pull-in parameters (pull-in displacement and pull-in voltage) is hence vital in the design of such microdevices. In this article, we present a complete nondimensional formulation and implementation of an efficient numerical scheme based on the Rayleigh-Ritz energy technique to determine the static pull-in parameters of an electrostatically actuated narrow microcantilever beam. Deflection of the beam is approximated by an admissible polynomial function that satisfies its mechanical boundary conditions. The principle of stationary potential energy and the condition of instability are then applied to obtain a highly nonlinear algebraic equation which is solved using the Fibonacci minimization algorithm. An optimum number of Gauss quadrature points is used to integrate the nonlinear electrostatic terms. Two mathematical models accounting for the fringing field capacitance are examined in turn. A comparison is made between the normalized values of pull-in parameters obtained by considering the two aforementioned fringing field models. Two examples of electrostatically actuated narrow microcantilevers are then solved using the proposed scheme for the validation purpose. For these examples, a comparison is made between the values of pull-in parameters obtained using the proposed scheme and those previously published in the literature. An excellent agreement between the two establishes the utility of the proposed scheme.


2012 ◽  
Vol 63 (4) ◽  
pp. 242-248 ◽  
Author(s):  
Kalaiarasi Ramakrishnan ◽  
Hosimin Srinivasan

Closed form Models for Pull-In Voltage of Electrostatically Actuated Cantilever Beams and Comparative Analysis of Cantilevers and MicrogripperPull-in voltage Evaluation is significant for the design of electrostatically actuated MEMS devices. In this work simple closed form models are derived for computation of pull-in voltage of cantilever beams. These models are obtained based on five different capacitance models suitable for wide range of dimensions. Using these models pull-in voltages are computed for a range of dimensions and the results are compared with the experimentally verified 3D finite element analysis results. The results show that, for every given range of dimension, choice of the model changes for the evaluation of the pull-in voltage with a maximum deviation of 2%. Therefore for a given range of dimension appropriate closed form model is to be chosen for accurate computation of pull-in voltage. Computation of pull-in voltage of microgripper further validates the closed form models. The results again show that for a given range of dimension only a particular model evaluates the pull-in voltage with less error.


Sign in / Sign up

Export Citation Format

Share Document