Kinetic study of the reaction between sulfur dioxide and calcium hydroxide at low temperature in a fixed-bed reactor

2000 ◽  
Vol 76 (1) ◽  
pp. 113-123 ◽  
Author(s):  
J.F Izquierdo ◽  
C Fité ◽  
F Cunill ◽  
M Iborra ◽  
J Tejero
2011 ◽  
Vol 356-360 ◽  
pp. 1528-1534
Author(s):  
Wei Fang Dong

A series of non-precious metal oxides catalysts were prepared for low-temperature selective catalytic reduction (SCR) of NOx with NH3 in a fixed bed reactor. The catalytic performance was evaluated by the removal efficiency of NOx and N2selectivity which were respectively detected by flue gas analyzer and flue gas chromatograph. Furthermore, the components of gas products from the above experiments were analysed with 2010 GC-MS. The results illustrated that the MnO2exhibited the highest NOx conversion to 95.46% and the highest selectivity of N2to 100% at temperature of 393K, then followed ZrO2, Al2O3and Fe2O3.


Fuel ◽  
2008 ◽  
Vol 87 (15-16) ◽  
pp. 3304-3312 ◽  
Author(s):  
Yuanjing Zheng ◽  
Peter Arendt Jensen ◽  
Anker Degn Jensen

2018 ◽  
Vol 913 ◽  
pp. 900-906
Author(s):  
Dong Zhu Ma ◽  
Jian Li ◽  
Di Yin ◽  
Yuan Huang ◽  
Rui Min Wang ◽  
...  

Mo-V-Ti catalysts of low temperature denitrification were prepared by dipping method. In order to study the activity of selective catalytic reduction, the catalyst was placed in a fixed bed reactor. Industrial flue gas was simulated with cylinder gas. The experimental condition is NO: 500ppm, NH3:500ppm, O2:8%, SO2:100ppm, N2: equilibrium gas, space velocity: 36000h-1. Results indicate that the catalyst prepared by dipping method had good denitrification activity and sulfur resistance at low temperature. The optimum ratio of catalyst was 3V2O5-6MoO3-91TiO2 (wt %). The conversion efficiency of NO was 80~93%, and the conversion efficiency of SO2 was less than 1% at 180~260 °C.


1996 ◽  
Vol 61 (8) ◽  
pp. 1141-1157 ◽  
Author(s):  
Květoslava Stejskalová ◽  
Zdeněk Bastl ◽  
Karel Mocek

The results are presented of a detailed experimental kinetic study of the heterogeneous reaction between gaseous sulfur dioxide and the solid active sodium carbonate of the second generation which has been prepared by a controlled thermal dehydration of higher hydrates of the sodium carbonate. The measurements have been carried out in an all-glass kinetic apparatus with an integral fixed-bed reactor. The reaction course was studied in dependence on genesis and nature of the active sodium carbonate, on temperature and on composition of the gas phase. The reaction rate is significantly affected by presence of the water vapour which acts as a gaseous catalyst. Experimental data have been treated by using the model proposed by Erdos (Collect. Czech. Chem. Commun. 32, 1653 (1967), and the values of the effective reaction rate constants have been computed. The kinetic study of active sodium carbonate of the second generation has been completed by the determination of microstructure (SEM) of solid samples before and after reaction, and by determining the solid surface composition before and after reaction by means of electronic spectra (ESCA).


2012 ◽  
Vol 104 ◽  
pp. 136-143 ◽  
Author(s):  
Dongdong Zhang ◽  
Wanbin Zhu ◽  
Can Tang ◽  
Yali Suo ◽  
Lijuan Gao ◽  
...  

Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Xincheng Wang ◽  
Fenghe Zhao ◽  
Long Huang

Temperature programmed surface reaction (TPSR) was developed as a method for rapid screening of catalysts. In this study, a series of acid catalysts was screened for the low-temperature dehydration of glycerol to acrolein via TPSR. Results suggested that most catalysts show activity of glycerol conversion to acrolein at a greatly different temperature range. HY, SiO2 supported H4SiW12O40 (STA/SiO2), SO42−/ZrO2, and SO42−/TiO2 were observed to be efficient for the conversion of glycerol into acrolein at 210 °C, which was significantly lower than that generally reported (250–340 °C). Moreover, high selectivity of acrolein was gained at 85% and 86% over SiW/SiO2 and SO42−/TiO2, respectively. A new style catalyst, ZnCl2/SiO2, was also found to be highly selective to acrolein and evaluated in a conventional fixed-bed reactor. Especially, stability tests showed that the catalyst life was up to 300 h with no clear deactivation on ZnCl2/SiO2 with hydrogen as dilution.


2012 ◽  
Vol 512-515 ◽  
pp. 1129-1136 ◽  
Author(s):  
Fan Hu Zeng ◽  
De Min He ◽  
Jun Guan ◽  
Qiu Min Zhang

Wulagai brown coal and Wulagai acid washed brown coal were used to investigate the effect of minerals in coal on the reactivity of coal pyrolysis. The experiments were carried out at atmospheric pressure in a fixed bed reactor. The results showed that minerals in brown coal affected the product yield of coal pyrolysis and phenols in the low-temperature tar. The minerals in coal played a catalytic role on the generation of carbon monoxide and ethylene, and the decomposition of tar. At the same time, they may suppress the decomposition of intermediates or the producing of final phenols during coal pyrolysis.


2018 ◽  
Vol 913 ◽  
pp. 893-899
Author(s):  
Dong Zhu Ma ◽  
Jian Li ◽  
Ling Zhang ◽  
Peng Guo ◽  
Zi Qiang Wen ◽  
...  

Mg-Mo-V-Ti catalysts of low temperature denitrification were prepared by dipping method. In order to study the activity of selective catalytic reduction, the catalyst was placed in a fixed bed reactor. Industrial flue gas was simulated with cylinder gas. Results indicate that the 0.1wt% content of MgO catalyst has good performance on denitration activity and sulfur resistance. The effects of oxygen content, space velocity and reaction temperature on the activity of the 0.1MgO-6MoO3-3V2O5-TiO2 wt% catalyst were investigated. With the increase of oxygen concentration, the denitrification efficiency increases when the oxygen concentration is less than 8%. When the oxygen content is greater than 8%, the denitrification efficiency is almost the same. The denitrification efficiency decreases with the increase of space velocity. The removal efficiency of NO 0.1MgO-6MoO3-3V2O5-TiO2 wt% catalyst over increases first and then becomes stable with the increase of temperature, and the conversion efficiency of SO2 is less than or equal to 2.2% at 120~240 °C.


Sign in / Sign up

Export Citation Format

Share Document