Representative building design and internal load patterns for modelling energy use in residential buildings in Hong Kong

2004 ◽  
Vol 77 (1) ◽  
pp. 69-85 ◽  
Author(s):  
K.S.Y. Wan ◽  
F.H.W. Yik
Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 642
Author(s):  
Mark Kyeredey Ansah ◽  
Xi Chen ◽  
Hongxing Yang

Reducing the lifecycle energy use of buildings with renewable energy applications has become critical given the urgent need to decarbonize the building sector. Multi-objective optimizations have been widely applied to reduce the operational energy use of buildings, but limited studies concern the embodied or whole lifecycle energy use. Consequently, there are issues such as sub-optimal design solutions and unclear correlation between embodied and operational energy in the current building energy assessment. To address these gaps, this study integrates a multi-objective optimization method with building energy simulation and lifecycle assessment (LCA) to explore the optimal configuration of different building envelopes from a lifecycle perspective. Major contributions of the study include the integrated optimization which reflects the dynamics of the whole lifecycle energy use. Insights from the study reveal the optimal configuration of PV and composite building façades for different regions in sub-Saharan Africa. The lifecycle energy use for the optimized building design resulted in 24.59, 33.33, and 36.93% energy savings in Ghana, Burkina Faso, and Nigeria, respectively. Additionally, PV power generation can efficiently cover over 90% of the total building energy demand. This study provides valuable insights for building designers in sub-Saharan Africa and similar areas that minimize lifecycle energy demand.


2005 ◽  
Vol 30 (1) ◽  
pp. 33-43
Author(s):  
Jia Beisi

Each person in Hong Kong produces three times more waste than that of Singapore. This is because a large portion of the waste in Hong Kong is from the construction sector. Re-decoration work carried out by dwellers in Hong Kong is one of the major sources of the construction and demolition waste. Development of flexible reusable infill systems with high recycling potential is significant. A number of these systems are currently used, mainly in public and commercial buildings. They may have potential to be applied in residential buildings in the future. This paper starts with an introduction to the infill systems applied in open building history. It then points out the need to investigate the development of infill processes by integrating infill products available in the market. The paper further introduces current open building studies on reusability of infill systems and addresses the problem that there is a lack of quantitative information on embodied energy and other environmental impacts of infill systems. In the methodology section the paper describes five types of partition walls selected, ranging from low flexibility to high flexibility. Applying an evaluation model for environmental impact, the paper analyzes embodied energy intensity, and environmental impacts of each partition systems in two simulated situations. One is in a two room unit of a public housing prototype and the other is in private apartment. It concludes that partition walls with higher flexibility are highly intensive in their embodied energy. In other environmental impacts, especially recycling potential, flexible partition wall panels exceed that of conventional block-work partitions. The study will enable more complete information to be obtained concerning the environmental impact of infill components and will assist architects and other building professional wisely apply open building design concepts.


2020 ◽  
Vol 172 ◽  
pp. 02009
Author(s):  
André Badura ◽  
Birgit Mueller ◽  
Ivo Martinac

Large and rapid climatic changes can be uncomfortable and sometimes hazardous to humans. Buildings protect people from external climatic conditions, and also mitigate the impacts of external climate extremes through their design and construction, as well as with the help of dedicated building service and other technical systems. Active space conditioning accounts for more than 30 per cent of the overall final energy use in Germany. In the life cycle of a building, the construction phase (planning and construction) is the phase with the shortest duration. However, the quality applied during this phase has a significant impact on the resources required, as well as the overall building performance during the much longer operational phase. Once built, buildings are often unable to adapt to boundary conditions that were not considered in the original building design. Consequently, changing outdoor climate conditions can result in an uncomfortable indoor climate over the lifetime of a building. The aim of this study was to determine the effectiveness of flexible solutions for reducing winter heating loads and to reducing/avoiding summer cooling loads in nonresidential buildings in Germany. Various external shading scenarios for non-residential buildings were analysed using the IDA ICE indoor climate and energy simulation tool. Key simulation parameters included the orientation and location of the building, as well as the envelope structure. We investigated the impacts of solar shading on heat storage in the building mass and indoor climate and how different types of envelopes affect overall energy use. The result shows that the use of an adaptive building envelope allows a higher reduction of the total energy demand by 7 % to 15 % compared to an increase in insulation thickness only.


2021 ◽  
Vol 13 (12) ◽  
pp. 6791
Author(s):  
Luka Pajek ◽  
Mitja Košir

Climate change is expected to expose the locked-in overheating risk concerning bioclimatic buildings adapted to a specific past climate state. The study aims to find energy-efficient building designs which are most resilient to overheating and increased cooling energy demands that will result from ongoing climate change. Therefore, a comprehensive parametric study of various passive building design measures was implemented, simulating the energy use of each combination for a temperate climate of Ljubljana, Slovenia. The approach to overheating vulnerability assessment was devised and applied using the increase in cooling energy demand as a performance indicator. The results showed that a B1 heating energy efficiency class according to the Slovenian Energy Performance Certificate classification was the highest attainable using the selected passive design parameters, while the energy demand for heating is projected to decrease over time. In contrast, the energy use for cooling is in general projected to increase. Furthermore, it was found that, in building models with higher heating energy use, low overheating vulnerability is easier to achieve. However, in models with high heating energy efficiency, very high overheating vulnerability is not expected. Accordingly, buildings should be designed for current heating energy efficiency and low vulnerability to future overheating. The paper shows a novel approach to bioclimatic building design with global warming adaptation integrated into the design process. It delivers recommendations for the energy-efficient, robust bioclimatic design of residential buildings in the Central European context, which are intended to guide designers and policymakers towards a resilient and sustainable built environment.


2013 ◽  
Vol 689 ◽  
pp. 114-118
Author(s):  
Tejwant Singh Brar ◽  
M. Arif Kamal

Large part of North–Western India has Hot Arid climate which is characterised by hot summers, humid monsoon, and extremely cold winters, and also there is a difference in daily maximum and mean temperatures of as much as 15 to 20°C and this results in high energy demand to achieve comfort conditions. Green buildings often claim that the reduced energy use during operation of the low energy. This paper gives categorical analysis of the technologies available for Low energy and green architecture and emphasizes the need to integrate both in residential buildings to lower the energy use in operation during the lifetime in a residential building in hot arid climate.


2018 ◽  
Vol 28 (4) ◽  
pp. 533-551 ◽  
Author(s):  
François Simon ◽  
Javier Ordoñez ◽  
Aymeric Girard ◽  
Cristobal Parrado

To reduce the energy consumption in buildings, there is a demand for tools that identify significant parameters of energy performance. The work presents the development and validation of a simulation model, called MEEDI, and graphical figures for the parametric sensitivity investigation of energy performance in different climates in Chile. The MEEDI is based on the ISO 13790 monthly calculation method of building energy use with two improved procedures for the calculation of the heat transfer through the floor and the solar heat gains. The graphical figures illustrate the effects of climate conditions, envelope components and window size and orientation on the energy consumption. The MEEDI program can contribute to find the best solution to increase energy efficiency in residential buildings. It can be adapted for various parameters, making it useful for future projects. The economic viability of specific measures for building envelope materials was analysed. Payback periods range from 5 to 27 years depending on the location and energy scenario. The study illustrates how building design decisions can have a significant impact on final energy performance. With simple envelope components modification, valuable energy gains and carbon emission reductions can be achieved in a cost-effective manner in Chile.


Sign in / Sign up

Export Citation Format

Share Document