X-ray photoemission and bremsstrahlung isochromat spectroscopy of bulk single crystalline SixGe1−x alloys

1998 ◽  
Vol 88-91 ◽  
pp. 395-398 ◽  
Author(s):  
Y. Saito ◽  
S. Fujimori ◽  
S. Suzuki ◽  
S. Sato ◽  
T. Honda ◽  
...  
Keyword(s):  
1999 ◽  
Vol 567 ◽  
Author(s):  
Z. Yu ◽  
R. Droopad ◽  
J. Ramdani ◽  
J.A. Curless ◽  
C.D. Overgaard ◽  
...  

ABSTRACTSingle crystalline perovskite oxides such as SrTiO3 (STO) are highly desirable for future generation ULSI applications. Over the past three decades, development of crystalline oxides on silicon has been a great technological challenge as an amorphous silicon oxide layer forms readily on the Si surface when exposed to oxygen preventing the intended oxide heteroepitaxy on Si substrate. Recently, we have successfully grown epitaxial STO thin films on Si(001) surface by using molecular beam epitaxy (MBE) method. Properties of the STO films on Si have been characterized using a variety of techniques including in-situ reflection high energy electron diffraction (RHEED), ex-situ X-ray diffraction (XRD), spectroscopic ellipsometry (SE), Auger electron spectroscopy (AES) and atomic force microscopy (AFM). The STO films grown on Si(001) substrate show bright and streaky RHEED patterns indicating coherent two-dimensional epitaxial oxide film growth with its unit cell rotated 450 with respect to the underlying Si unit cell. RHEED and XRD data confirm the single crystalline nature and (001) orientation of the STO films. An X-ray pole figure indicates the in-plane orientation relationship as STO[100]//Si[110] and STO(001)// Si(001). The STO surface is atomically smooth with AFM rms roughness of 1.2 AÅ. The leakage current density is measured to be in the low 10−9 A/cm2 range at 1 V, after a brief post-growth anneal in O2. An interface state density Dit = 4.6 × 1011 eV−1 cm−2 is inferred from the high-frequency and quasi-static C-V characteristics. The effective oxide thickness for a 200 Å STO film is around 30 Å and is not sensitive to post-growth anneal in O2 at 500-700°C. These STO films are also robust against forming gas anneal. Finally, STO MOSFET structures have been fabricated and tested. An extrinsic carrier mobility value of 66 cm2 V−11 s−1 is obtained for an STO PMOS device with a 2 μm effective gate length.


1995 ◽  
Vol 401 ◽  
Author(s):  
A. L. Vasiliev ◽  
D. S. Linehan ◽  
E. P. Kvam ◽  
L. Hou ◽  
M. W. McElfresh

AbstractThe results of a transmission electron microscopic (TEM) and X-ray microanalysis (EDS) study of Yba2Cu3O7-x (YBCO) films grown on vicinal (011) SrTiO3 substrates are presented. The YBCO films tend to be single crystalline grown in single variant orientation with c-axis =;45° from the surface. Cracks, second phase precipitates (CuO and Y2O3), and a few small YBCO grains in other orientations were revealed in the films.


2009 ◽  
Vol 1156 ◽  
Author(s):  
Fridrik Magnus ◽  
Arni Sigurdur Ingason ◽  
Sveinn Olafsson ◽  
Jon Tomas Gudmundsson

AbstractUltrathin TiN films were grown by reactive dc magnetron sputtering on amorphous SiO2 substrates and single-crystalline MgO substrates at 600°C. The resistance of the films was monitored in-situ during growth to determine the coalescence and continuity thicknesses. TiN films grown on SiO2 are polycrystalline and have coalescence and continuity thicknesses of 8 Å and 19 Å, respectively. TiN films grow epitaxially on the MgO substrates and the coalescence thickness is 2 Å and the thickness where the film becomes continuous cannot be resolved from the coalescence thickness. X-ray reflection measurements indicate a significantly higher density and lower roughness of the epitaxial TiN films.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 479-485
Author(s):  
C. W. LAI ◽  
X. Y. ZHANG ◽  
H. C. ONG ◽  
J. Y. DAI ◽  
H. L. W. CHAN

Large-scale single crystalline In 2 O 3 nanowires were successfully synthesized on anodic alumina membranes by a simple thermal evaporation method at 570°C. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy studies revealed the formation of single crystalline In 2 O 3 nanowires with diameters of 50–100 nm and lengths of up to a few hundreds of micrometers. Cathodeluminescence study revealed existence of oxygen vacancies evidenced by a strong and broad emission at 470 nm with a shoulder at 400 nm. The growth mechanism of the nanostructures is also discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Changyu Li ◽  
Shouxin Liu

Mesoporous nanosheets of single-crystallineβ-nickel hydroxide (β-Ni(OH)2) were successfully synthesized via a facile hydrothermal method using Ni(NO3)2 · 6H2O as precursor in a mixed solution of sodium hydroxide (NaOH) and sodium dodecylbenzenesulfonate (SDBS). Single-crystalline nickel oxide (NiO) mesoporous nanosheets can be obtained through a thermal decomposition method usingβ-Ni(OH)2mesoporous nanosheets as precursor. The influences of SDBS and hydrothermal treatment were carefully investigated; the results showed that they played important roles in the formation ofβ-Ni(OH)2mesoporous nanosheets. The as-obtainedβ-Ni(OH)2and NiO were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravity-differential thermal analysis (TG-DTA), and specific surface area, and pore size test.


2007 ◽  
Vol 75 (15) ◽  
Author(s):  
Alexey Bosak ◽  
Michael Krisch ◽  
Marcel Mohr ◽  
Janina Maultzsch ◽  
Christian Thomsen

1991 ◽  
Vol 58 (1) ◽  
pp. 56-58 ◽  
Author(s):  
Masatoshi Kanaya ◽  
Jun Takahashi ◽  
Yuichiro Fujiwara ◽  
Akihiro Moritani

2003 ◽  
Vol 807 ◽  
Author(s):  
Neil C. Hyatt ◽  
Joseph A. Hriljac ◽  
Alia Choudhry ◽  
Laura Malpass ◽  
Gareth P. Sheppard ◽  
...  

ABSTRACTReactions of zeolite Na-A with AgI, and the sodium, copper and lead forms of zeolites A, LTA, X and Y with NaI, have been examined as possible starting routes to the long term immobilisation of iodine-129. Heating the salts in air, at 500°C, with the sodium forms of the zeolites leads to the formation of occlusion products, where the iodide salt migrates into the zeolite pores. Detailed studies of the Na-A / 5AgI complex indicate it has a uniform distribution of Na, Si, Al, Ag and I, and is thermally stable to ca. 750°C, where there is a substantial weight loss as iodine is released. In situ powder X-ray diffraction studies have been used to monitor the occlusion reaction at 400°C, and show that the occlusion product decomposes to produce a single crystalline phase at 800°C prior to further decomposition at 850°C to a mixture of nepheline and elemental silver.


Sign in / Sign up

Export Citation Format

Share Document