The influence of early sowing of wheat and lupin crops on evapotranspiration and evaporation from the soil surface in a Mediterranean climate

1999 ◽  
Vol 42 (2) ◽  
pp. 205-218 ◽  
Author(s):  
J. Eastham ◽  
P.J. Gregory ◽  
D.R. Williamson ◽  
G.D. Watson
2007 ◽  
Vol 7 ◽  
pp. 175-180 ◽  
Author(s):  
Yvonne A. Wood ◽  
Mark Fenn ◽  
Thomas Meixner ◽  
Peter J. Shouse ◽  
Joan Breiner ◽  
...  

We report the rapid acidification of forest soils in the San Bernardino Mountains of southern California. After 30 years, soil to a depth of 25 cm has decreased from a pH (measured in 0.01 M CaCl2) of 4.8 to 3.1. At the 50-cm depth, it has changed from a pH of 4.8 to 4.2. We attribute this rapid change in soil reactivity to very high rates of anthropogenic atmospheric nitrogen (N) added to the soil surface (72 kg ha–1 year–1) from wet, dry, and fog deposition under a Mediterranean climate. Our research suggests that a soil textural discontinuity, related to a buried ancient landsurface, contributes to this rapid acidification by controlling the spatial and temporal movement of precipitation into the landsurface. As a result, the depth to which dissolved anthropogenic N as nitrate (NO3) is leached early in the winter wet season is limited to within the top ~130 cm of soil where it accumulates and increases soil acidity.


2021 ◽  
Author(s):  
Abdelkrim Benaradj ◽  
Hafidha Boucherit ◽  
Abdelkader Bouderbala ◽  
Okkacha Hasnaoui

The Algerian steppe is of great interest in terms of vegetation, mainly in the Naâma region. This steppe vegetation is generally composed of annual and perennial grasses and other herbaceous plants, as well as, bushes and small trees. It is characterized by an arid Mediterranean climate where the average annual precipitation (100 to 250 mm) is insufficient to ensure the maintenance of the vegetation, in which the potential evaporation always exceeds the precipitations. This aridity has strong hydrological effect and edaphic implications from which it is inseparable. Water losses are great than gains due to the evaporation and transpiration from plants (evapotranspiration). The wind moves soils for one location to another, and causes a strong evapotranspiration of the plants, which is explained by a strong chronic water deficit of climatic origin of these compared to the potential evapotranspiration, opposed to a humid climate. Evapotranspiration is certainly closely linked to climate factors (solar radiation, temperature, wind, etc.), but it also depends on the natural environment of the studied region. Potential evapotranspiration (PET) data estimated from Thornthwaite’s method for the three stations (Mécheria, Naâma and Ainsefra). The average annual value of potential evapotranspiration is of the order of 807 mm in Mécheria, of 795 mm in Naâma de and in Ainsefra of 847 mm. It is more than 3 times greater than the value of the rainfall received. This propels it globally in the aridity of the region and from which the water balance of plants is in deficit. The potential evapotranspiration of vegetation in arid areas is very important due to high temperature and sunshine. During the cold season, precipitation covers the needs of the potential evapotranspiration and allows the formation of the useful reserve from which the emergence of vegetation. From the month of April there is an exhaustion of the useful reserve which results of progressive deficit of vegetation. Faced with this phenomenon of evatranspiration, the steppe vegetation of the region then invests in “survival” by reducing the phenomena of evapotranspiration, photosynthetic leaf surfaces, in times of drought. These ecophysiological relationships can largely explain the adaptation of steppe species (low woody and herbaceous plants) to the arid Mediterranean climate. Mechanisms and diverse modalities were allowing them to effectively resist for this phenomenon. The adaptation of the steppe vegetation by the presence of a root system with vertical or horizontal growth or both and seems to depend on the environmental conditions, and by the reduction of the surface of transpiration, and by the fall or the rolling up of the leaves, and by a seasonal reduction of transpiration surface of the plant to reduce water losses during the dry season (more than 6 months) of the year.. Some xerophytes produce “rain roots” below the soil surface, following light precipitation or during dew formation. Other persistent sclerophyllous species by which decreases transpiration by the hardness of the leaves often coated with a thick layer of wax or cutin.


2021 ◽  
Author(s):  
Juan F. Martinez-Murillo ◽  
José A. Sillero-Medina ◽  
José D. Ruiz-Sinoga

<p>During the last 25 years, an increasing rainfall erosivity occurred in South of Spain according to recent studies. This fact may rendered in an increment of the derived threatens from water erosion and, consequently, soil loss processes, one of the main geomorphic agent in that geographical area. This study deals with the application of RUSLE equation in two-contrasted Mediterranean mountainous watershed from 1997 to 2018. Both of them are characterised with very common ecogeomorphologic features from Mediterranean mountains but differs in the rainfall regime: one watershed shows an altitudinal gradient from dry-Mediterranean to subhumid Mediterranean climate, and the other one from semiarid to dry-Mediterranean climate.</p><p>From the methodological point of view, RULSE was applied but some modifications were introduced in its calculation: i) rainfall intensity calculated in 10-minutes instead of 30-minutes for Factor R; ii) vegetation cover estimated by means of NDVI for Factor C; and iii) validation using field inventory of soil surface components.</p><p>The results indicated differences between both watersheds given their different ecogeomorphologic conditions. The precision of using I10 let valuate better the soil loss estimation and its spatial and temporal variability. The validation with the soil surface components obtained better results in the rainiest watershed with more biotic ecogeomorphological conditions. This study is of great useful to detect priority areas to carry out revegetation plans to control erosion and floodings.</p>


Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 711-722 ◽  
Author(s):  
Axel Berkenkamp ◽  
Eckart Priesack ◽  
Jean Charles Munch
Keyword(s):  

2020 ◽  
pp. 69-73
Author(s):  
S.G. Birjukov ◽  
O.I. Kovalenko ◽  
A.A. Orlov

The approach to creating standard means for reproducing units of volumetric activity of radon and thoron and flux density of radon from the soil surface is described based on the physical principles of reproducing these units of quantities and using as technical means for reproducing bubblers with a radioactive solution of radium salt, reference capacities of known volume, emanation chambers for generation of a toron, a gamma spectrometer with a semiconductor detector from highly pure germanium and radon radiometers. Reproduction consists in the physical realization of units in accordance with their definition as applied to the formation of radon and thoron in the radioactive rows of radium and thorium. The proposed approach will allow to determine the structural, structural and other technical solutions of standard measuring instruments, as well as specific techniques and methods of working with them. The creation of standard tools and technologies for reproducing units of volumetric activity of radon and thoron and the density of radon flux from the soil surface will ensure the unity and reliability of measurements in the field of ionizing radiation, traceability of units and bringing the characteristics of national standards in line with world achievements.


Author(s):  
I.G.C. Kerr ◽  
J.M. Williams ◽  
W.D. Ross ◽  
J.M. Pollard

The European rabbit (Oryctolagus cuniculus) introduced into New Zealand in the 183Os, has consistently flourished in Central Otago, the upper Waitaki, and inland Marlborough, all areas of mediterranean climate. It has proved difficult to manage in these habitats. The 'rabbit problem' is largely confined to 105,000 ha of low producing land mostly in semi arid areas of Central Otago. No field scale modifications of the natural habitat have been successful in limiting rabbit numbers. The costs of control exceed the revenue from the land and continued public funding for control operations appears necessary. A system for classifying land according to the degree of rabbit proneness is described. Soil survey and land classification information for Central Otago is related to the distribution and density of rabbits. This intormation can be used as a basis for defining rabbit carrying capacity and consequent land use constraints and management needs. It is concluded that the natural rabbit carrying capacity of land can be defined by reference to soil survey information and cultural modification to the natural vegetation. Classification of land according to rabbit proneness is proposed as a means of identifying the need for, and allocation of, public funding tor rabbit management. Keywords: Rabbit habitat, rabbit proneness, use of rabbit prone land.


2019 ◽  
Vol 37 (2) ◽  
pp. 101-112 ◽  
Author(s):  
Annie-Claude Letendre ◽  
Darwyn S. Coxson ◽  
Katherine J. Stewart

Author(s):  
V. P. Belobrov ◽  
S. А. Yudin ◽  
V. А. Kholodov ◽  
N. V. Yaroslavtseva ◽  
N. R. Ermolaev ◽  
...  

The influence of different systems of soil cultivation is considered - traditional (recommended) technology and direct sowing, which is increasingly used under dry conditions of the region. The rehabilitation of the degraded southern chernozems and dark chestnut soils structure during 13 and 7 years of direct sowing, respectively, has not been established. It takes much longer to rehabilitation the aggregate state of soils, which is currently in a critical condition of the content of aggregates> 10 mm in size and the sum of agronomically valuable aggregates. The soils under 60-year treeline, as a control, showed a satisfactory range of aggregates, which indicates a high degree of soil degradation in the past and a long period of their recovery time. The effectiveness of direct sowing usage in the cultivation of a wider range of grain and row crops (winter wheat, sunflower, peas, chickpeas, rapeseed, buckwheat, corn) is due to the peculiarities of agricultural technologies. Abandoning of naked fallows and soil treatments with the simultaneous use of plant residues and cover crops on the soil surface between the harvest and sowing of winter crops provides an anti-erosion effect and, as a consequence, a decrease in physical evaporation, an increase in moisture and biota reserves, an increase in microbiological processes, which are noted in the form trends in improving the agrochemical and agrophysical properties of soils.


Sign in / Sign up

Export Citation Format

Share Document