Effects of furrow irrigation methods, mulching and soil water suction on the growth, yield and water use efficiency of tomato in the Nigerian Savanna

2000 ◽  
Vol 45 (3) ◽  
pp. 317-330 ◽  
Author(s):  
A.A. Ramalan ◽  
C.U. Nwokeocha
2017 ◽  
Vol 48 (4) ◽  
Author(s):  
Yahya & Abdul-Razaq

This experiment was carried out at the experimental farm of Field Crop Department, College of Agriculture, university of Baghdad, during two spring seasons of 2012 and 2013 to study the response of quality characteristics of sunflower cultivar Akmar to the irrigation methods and water of magnetization technology and water use efficiency. The experiment was laid out as a split plot in randomized complete block design (RCBD) with three replications. Four irrigation methods were used as main plots, [Farrow irrigation (I1), unfixed alternate furrow irrigation (I2), fixed alternate furrow irrigation (I3) and basin irrigation (I4)], while four levels of magnetized water (0, 1000, 2000 and 3000) Gauss were used as sub plot treatments. The results revealed that unfixed alternate furrow irrigation method could reduce irrigation water by 40 %, and it was irrigation water reduced from 425 to 255 mm per season in 2012th season and reduced from 364 to 234mm per season in 2013 season were an increment of water use efficiency (WUE) by 63.5% and 61.4% were accrued during growing seasons respectively in comparison with full irrigation treatment (I1). The Leaves potassium content decreased by14.4 to 5.8% for both seasons respectively. No significant effect was detected between I1 and I2 in qualitative traits except reduction in oil percentage as it reaches 6.3 to 8.8% in both seasons respectively. Results displayed a positive effect of using magnetized irrigation water on all measured traits. WUE increased by 45.1 to 56 %, nitrogen leaf content by 19.6 and 4.8% , phosphor leaves content by 35.1 and 41.7%, potassium leaves content by 20.7 and 10.8%, chlorophyll content by 4.5 to 7.6%, seed oil content by 5.0 to 5.6%. Interaction relations between experiment treatments were significant in some of studded traits.


2018 ◽  
Vol 64 (2) ◽  
pp. 57-64
Author(s):  
Ibrahim Mubarak ◽  
Mussaddak Janat ◽  
Mohsen Makhlouf

Abstract Due to water scarcity and dry Mediterranean conditions, improving water use efficiency is a major challenge for sustainable crop production and environment protection. Field experiments were conducted for two consecutive years (2010 and 2011) to assess the effects of variety and irrigation method on potato crop, following a 2 × 4 factorial experiment type arranged in a split plot design with two spring potato varieties (Spunta and Marfona), and four irrigation methods (drip irrigation with two modes of dripper spacing/dripper flow: 30 cm at 4 l/h and 60 cm at 8 l/h, sprinkle irrigation, and furrow irrigation), with three replicates. Potato was irrigated when soil moisture in the active root depth was within the range of 75-80% of field capacity as determined by the neutron probe technique. Results did not show any differences between both varieties. Moreover, no differences in marketable yield, total dry matter, and harvest index were found between irrigation methods. However, results showed that sprinkle irrigation significantly enhanced nitrogen use efficiency. Furthermore, both water productivity and irrigation water use efficiency were significantly increased under drip irrigation compared with the other irrigation methods. They were about twice those under furrow irrigation, indicating that the employment of drip irrigation method can effectively address water shortage and sustainable potato production, in the dry Mediterranean region.


1992 ◽  
Vol 43 (5) ◽  
pp. 1019 ◽  
Author(s):  
AL Garside ◽  
RJ Lawn ◽  
RC Muchow ◽  
DE Byth

Plant and soil water status, crop water use and water use efficiency, as affected by irrigation treatment, were monitored over two seasons for soybean cv. Ross, sown in the late wet season in the Ord Irrigation Area in north Western Australia. Irrigation treatments were, in both seasons, furrow irrigation after cumulative open pan evaporative losses of 30, 60 120 and 240 mm, and in the second year, an additional treatment, saturated soil culture (continuous furrow irrigation, analogous to irrigation after 0 mm pan evaporation). As expected, during periods of strong evaporative demand plant water status, as indicated by leaf water potential and leaf conductance of water vapour, was consistently greater in the more frequently irrigated treatments, while soil water depletion occurred to greater extent and depth in the less frequently irrigated treatments. However, total soil water use was directly proportional to crop growth, so that there was little evidence that water use efficiency was enhanced by restricting water supply in this environment. Indeed, efficiency of water use even under the continuous furrow irrigation system was comparable with that from other irrigation treatments. The responses are interpreted to imply that there is unlikely to be any economic advantage to the use of limited supplemental irrigation in this environment.


2019 ◽  
Vol 217 ◽  
pp. 292-302 ◽  
Author(s):  
Shiva Kumar Jha ◽  
Tefo Steve Ramatshaba ◽  
Guangshuai Wang ◽  
Yueping Liang ◽  
Hao Liu ◽  
...  

2017 ◽  
Vol 48 (1) ◽  
Author(s):  
T. K. Masood

Field experiment was carried out during spring seasons of 2015 in AL-Rasheed township southern of Baghdad, Iraq to study the effects of irrigation methods on water content distribution, water use efficiency and yield of corn. Four surface irrigation treatments were used: 100% conventional basin (control), 70% of control treatment basin irrigation,  Conventional furrow and shallow furrow. Water content distribution results showed that shallow furrow irrigation decreased moisture content to 14.7, 18.3 % for 0-10 and 10-20 cm depth respectively, compared to conventional basin irrigation. The result showed that treatments of conventional furrow, shallow furrow and 70% basin irrigation reduced the depth of added water in rate of 33, 28 and 30%, respectively comperd to control treatment (884mm season-1). Conventional furrow irrigation significantly increased corn grain yield to all treatments except conventional basin. In the mean while, other treatment did not differ from the conventional irrigation method. Water use efficiency of conventional furrow irrigation was significantly higher than all other treatments with 80% increment than others. Thus the 70% basin irrigation   and shallow furrow irrigation is more productive  yield when compared with traditional irrigation.


2017 ◽  
Vol 48 (4) ◽  
Author(s):  
Yahya & Abdul-Razaq

This experiment was carried out at the experimental farm of Field Crop Department, College of Agriculture, university of Baghdad, during two spring seasons of 2012 and 2013 to study the response of sunflower cultivar Akmar to irrigation methods, magnetized water technology on growth characteristics, yield and water use efficiency. The experiment was laid out as a split plot in randomized complete block design with three replications. Four irrigation methods were used as main plots, [farrow irrigation (I1), unfixed alternate furrow irrigation (I2), fixed alternate furrow irrigation (I3) and basin irrigation (I4)], while four levels of magnetized water (0, 1000, 2000 and 3000) Gauss were used as sub plot treatments. Results revealed that unfixed alternate furrow irrigation method (I2) did not increase the yield and growth of sunflower for both seasons but it reduces irrigation water by 40%. Yield reached 3.08 and 2.82 ton ha-1 in the two seasons respectively, were as irrigation water reduced from 425 to 255 mm per season in 2012 season and reduced from 364 to 234 mm per season in 2013th season were an increment of water use efficiency (WUE) by 63.5% and 61.4% during growing seasons respectively in comparison with full irrigation treatment (I1). Root dry weight was increased by 4.8 and 7.5%. Results displayed a positive effect of using magnetized irrigation water on all measured traits. Yield was increased by 44.0 to 43.0%, WUE increased by 45.1 to 56.0 %, root dry weight by 8.9 and 8.0%, plant height by 4.7 and 5.3%, number of leaves per plant increased by 7.8 to 4.3%, leaf area by 24.1 % to 25.8 %, stem diameter by 10.2 to 7.9% and total dry weight by 23.9 to 18.6% for both spring seasons of 2012 and 2013 respectively. Interaction relations between experiment treatments were significant in some of studded traits.


Sign in / Sign up

Export Citation Format

Share Document