An X-ray photoelectron spectroscopy investigation into the interface formed between poly(2-methoxy-5-(2′-ethyl-hexyloxyl)-p-phenylene vinylene) and indium tin oxide

2003 ◽  
Vol 138 (1-2) ◽  
pp. 113-117 ◽  
Author(s):  
T.P. Nguyen ◽  
P. Le Rendu ◽  
S.A. de Vos
2005 ◽  
Vol 54 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Bagas Pujilaksono ◽  
Uta Klement ◽  
Lars Nyborg ◽  
Urban Jelvestam ◽  
Sven Hill ◽  
...  

2001 ◽  
Author(s):  
Michael Ollinger ◽  
Valentin Craciun ◽  
Rajiv Singh

Abstract Cathodoluminescence (CL) degradation measurements showed that by applying a nano meter scale indium tin oxide (ITO) coating on micron sized ZnS:Ag particulates the degradation lifetime was dramatically improved. X-ray photoelectron spectroscopy (XPS) analysis showed that the Zn 2p3/2 and S 2p3/2 peaks of the degraded ZnS:Ag were shifted to higher binding energies, which correspond to oxidized elements, with respect to those found for as-received ZnS:Ag. The XPS analysis for the ITO coated ZnS:Ag showed a broadening of the Zn 2p3/2 and S 2p3/2 peaks, which were a convolution of two peaks. In this case, the Zn 2p3/2 and S 2p3/2 peaks corresponding to ZnS were still present together with a small shoulder corresponding to the oxidized elements. This difference in the XPS shows that the ITO coating reduced the degradation rate by slowing the surface chemical changes on the ZnS:Ag.


NANO ◽  
2014 ◽  
Vol 09 (04) ◽  
pp. 1450047 ◽  
Author(s):  
GUANG SHENG CAO ◽  
RUILIN WANG ◽  
PEILONG WANG ◽  
XIN LI ◽  
YUE WANG ◽  
...  

The nanoporous Co 3 O 4 thin films were prepared on indium tin oxide (ITO) glasses by an electrodeposition method. The surface morphology and composition of the nanoporous Co 3 O 4 films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDS) and X-ray photoelectron spectroscopy (XPS). The results show that the as-deposited nanoporous Co 3 O 4 film is constructed by many interconnected nanoflakes with thickness of about 40 nm. The cyclic voltammetry (CV) measurement indicates that the nanoporous Co 3 O 4 films exhibit remarkable electrocatalytic activities for the hydrogen peroxide ( H 2 O 2) reduction which shows that it is a good candidate to be employed as electrode materials for electrochemical sensing of H 2 O 2. Further analysis indicated that the detection sensitivity of the sensor was 1.357 mA mM-1 cm-2 and the detection limit was estimated to be about 0.2 mM.


1999 ◽  
Vol 315 (5-6) ◽  
pp. 307-312 ◽  
Author(s):  
J.S. Kim ◽  
P.K.H. Ho ◽  
D.S. Thomas ◽  
R.H. Friend ◽  
F. Cacialli ◽  
...  

2012 ◽  
Vol 502 ◽  
pp. 77-81
Author(s):  
Z.Y. Zhong ◽  
J.H. Gu ◽  
X. He ◽  
C.Y. Yang ◽  
J. Hou

Indium tin oxide (ITO) thin films were deposited by RF magnetron sputtering on glass substrates employing a sintered ceramic target. The influence of substrate temperature on the structural, compositional, optical and electrical properties of the thin films were investigated by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), spectrophotometer and four-point probes. All the ITO thin films show a polycrystalline indium oxide structure and have a preferred orientation along the (222) direction. The substrate temperature significantly affects the crystal structure and optoelectrical properties of the thin films. With the increment of substrate temperature, the electrical resistivity of the deposited films decreases, the crystallite dimension, optical bandgap and average transmittance in the visible region increase. The ITO thin film deposited at substrate temperature of 200 °C possesses the best synthetic optoelectrical properties, with the highest transmittance, the lowest resistivity and the highest figure of merit.


Sign in / Sign up

Export Citation Format

Share Document