Properties of Indium Tin Oxide Films Prepared by RF Magnetron Sputtering at Different Substrate Temperatures

2012 ◽  
Vol 502 ◽  
pp. 77-81
Author(s):  
Z.Y. Zhong ◽  
J.H. Gu ◽  
X. He ◽  
C.Y. Yang ◽  
J. Hou

Indium tin oxide (ITO) thin films were deposited by RF magnetron sputtering on glass substrates employing a sintered ceramic target. The influence of substrate temperature on the structural, compositional, optical and electrical properties of the thin films were investigated by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), spectrophotometer and four-point probes. All the ITO thin films show a polycrystalline indium oxide structure and have a preferred orientation along the (222) direction. The substrate temperature significantly affects the crystal structure and optoelectrical properties of the thin films. With the increment of substrate temperature, the electrical resistivity of the deposited films decreases, the crystallite dimension, optical bandgap and average transmittance in the visible region increase. The ITO thin film deposited at substrate temperature of 200 °C possesses the best synthetic optoelectrical properties, with the highest transmittance, the lowest resistivity and the highest figure of merit.

2013 ◽  
Vol 20 (05) ◽  
pp. 1350045 ◽  
Author(s):  
BO HE ◽  
LEI ZHAO ◽  
JING XU ◽  
HUAIZHONG XING ◽  
SHAOLIN XUE ◽  
...  

In this paper, we investigated indium-tin-oxide (ITO) thin films on glass substrates deposited by RF magnetron sputtering using ceramic target to find the optimal condition for fabricating optoelectronic devices. The structural, electrical and optical properties of the ITO films prepared at various substrate temperatures were investigated. The results indicate the grain size increases with substrate temperature increases. As the substrate temperature grew up, the resistivity of ITO films greatly decreased. The ITO film possesses high quality in terms of electrode functions, when substrate temperature is 480°C. The resistivity is as low as 9.42 × 10-5 Ω• cm , while the carrier concentration and mobility are as high as 3.461 × 1021 atom∕cm3 and 19.1 cm2∕V⋅s, respectively. The average transmittance of the film is about 95% in the visible region. The novel ITO/np-Silicon frame, which prepared by RF magnetron sputtering at 480°C substrate temperature, can be used not only for low-cost solar cell, but also for high quantum efficiency of UV and visible lights enhanced photodetector for various applications.


2014 ◽  
Vol 895 ◽  
pp. 181-185 ◽  
Author(s):  
M. Sobri ◽  
A. Shuhaimi ◽  
M. Mazwan ◽  
K.M. Hakim ◽  
S. Najwa ◽  
...  

Nickel (Ni)/ indium tin oxide (ITO) thin-films have been deposited on silicon (Si) and glass substrates using radio-frequency (RF) magnetron sputtering at 200°C temperature. ITO layer was deposited on top of Ni layer with various deposition parameter. The material and optical properties of the ITO samples with and without Ni seed layer were analyzed. X-ray diffraction studies shows that the films are crystalline with the typical ITO diffraction peaks of (222), (400) and (411). The FESEM and AFM images shows that the grains have uniform shapes and sizes. FESEM results reveal that the grain size along the sample surface decreases when the Ni seed layer is added. Both the samples shows higher transmittance of more than 95% in UV-vis spectrometer.


2019 ◽  
Vol 10 ◽  
pp. 1511-1522 ◽  
Author(s):  
Petronela Prepelita ◽  
Ionel Stavarache ◽  
Doina Craciun ◽  
Florin Garoi ◽  
Catalin Negrila ◽  
...  

In this work, rapid thermal annealing (RTA) was applied to indium tin oxide (ITO) films in ambient atmosphere, resulting in significant improvements of the quality of the ITO films that are commonly used as conductive transparent electrodes for photovoltaic structures. Starting from a single sintered target (purity 99.95%), ITO thin films of predefined thickness (230 nm, 300 nm and 370 nm) were deposited at room temperature by radio-frequency magnetron sputtering (rfMS). After deposition, the films were subjected to a RTA process at 575 °C (heating rate 20 °C/s), maintained at this temperature for 10 minutes, then cooled down to room temperature at a rate of 20 °C/s. The film structure was modified by changing the deposition thickness or the RTA process. X-ray diffraction investigations revealed a cubic nanocrystalline structure for the as-deposited ITO films. After RTA, polycrystalline compounds with a textured (222) plane were observed. X-ray photon spectroscopy was used to confirm the beneficial effect of the RTA treatment on the ITO chemical composition. Using a Tauc plot, values of the optical band gap ranging from 3.17 to 3.67 eV were estimated. These values depend on the heat treatment and the thickness of the sample. Highly conductive indium tin oxide thin films (ρ = 7.4 × 10−5 Ω cm) were obtained after RTA treatment in an open atmosphere. Such films could be used to manufacture transparent contact electrodes for solar cells.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


2019 ◽  
Vol 33 (15) ◽  
pp. 1950152 ◽  
Author(s):  
Jing Wu ◽  
Xiaofeng Zhao ◽  
Chunpeng Ai ◽  
Zhipeng Yu ◽  
Dianzhong Wen

To research the piezoresistive properties of SiC thin films, a testing structure consisting of a cantilever beam, SiC thin films piezoresistors and a Cr/Pt electrode is proposed in this paper. The chips of testing structure were fabricated by micro-electro-mechanical system (MEMS) technology on a silicon wafer with [Formula: see text]100[Formula: see text] orientation, in which SiC thin films were deposited by using radio-frequency (13.56 MHz) magnetron sputtering method. The effect of sputtering power, annealing temperature and time on the microstructure and morphology of the SiC thin films were investigated by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). It indicates that a good continuity and uniform particles on the SiC thin film surface can be achieved at sputtering power of 160 W after annealing. To verify the existence of Si–C bonds in the thin films, X-ray photoelectron spectroscopy (XPS) was used. Meanwhile, the piezoresistive properties of SiC thin films piezoresistors were measured using the proposed cantilever beam. The test result shows that it is possible to achieve a gauge factor of 35.1.


2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


2013 ◽  
Vol 832 ◽  
pp. 281-285
Author(s):  
S. Najwa ◽  
A. Shuhaimi ◽  
N. Ameera ◽  
K.M. Hakim ◽  
M. Sobri ◽  
...  

Indium tin oxide was prepared using RF magnetron sputtering at different substrate temperature. The morphological and electrical properties were investigated. Morphological properties were observed by atomic force microscopy. Electrical properties were measured using standard two-point probe measurements. The result shows that the average roughness and peak to valley value are highest at high substrate temperature. The watershed analysis shows that the total grain boundaries are highest at the substrate temperature of 200°C. The lowest resistivity value of 9.57×10-5 Ωcm is obtained from ITO nanocolumn deposited at substrate temperature of 200°C. The improvement of morphological and electrical properties as transparent conducting oxide was observed from ITO nanocolumn deposited at substrate temperature of 200°C.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
A. M. H. R. Hakimi ◽  
F. Schoofs ◽  
M. G. Blamire ◽  
S. Langridge ◽  
S. S. Dhesi

The effects of high-temperature annealing on ferromagnetic Co-doped Indium Tin Oxide (ITO) thin films have been investigated using X-ray diffraction (XRD), magnetometry, and X-Ray Magnetic Circular Dichroism (XMCD). Following annealing, the magnetometry results indicate the formation of Co clusters with a significant increase in the saturation magnetization of the thin films arising from defects introduced during cluster formation. However, sum rule analysis of the element-specific XMCD results shows that the magnetic moment at the Co sites is reduced after annealing. The effects of annealing demonstrate that the ferromagnetism observed in the as-deposited Co-doped ITO films arises from intrinsic defects and cannot be related to the segregation of metallic Co clusters.


2012 ◽  
Vol 8 (6) ◽  
pp. 460-463 ◽  
Author(s):  
Shi-na Li ◽  
Rui-xin Ma ◽  
Liang-wei He ◽  
Yu-qin Xiao ◽  
Jun-gang Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document