An analysis of radiated noise from rolling tire vibration

JSAE Review ◽  
2003 ◽  
Vol 24 (4) ◽  
pp. 465-469 ◽  
Author(s):  
T Koizumi
Keyword(s):  
Author(s):  
Sterling McBride ◽  
Ricardo Burdisso ◽  
Corina Sandu

ABSTRACT Tire-pavement interaction noise (TPIN) is one of the main sources of exterior noise produced by vehicles traveling at greater than 50 kph. The dominant frequency content is typically within 500–1500 Hz. Structural tire vibrations are among the principal TPIN mechanisms. In this work, the structure of the tire is modeled and a new wave propagation solution to find its response is proposed. Multiple physical effects are accounted for in the formulation. In an effort to analyze the effects of curvature, a flat plate and a cylindrical shell model are presented. Orthotropic and nonuniform structural properties along the tire's transversal direction are included to account for differences between its sidewalls and belt. Finally, the effects of rotation and inflation pressure are also included in the formulation. Modeled frequency response functions are analyzed and validated. In addition, a new frequency-domain formulation is presented for the computation of input tread pattern contact forces. Finally, the rolling tire's normal surface velocity response is coupled with a boundary element model to demonstrate the radiated noise at the leading and trailing edge locations. These results are then compared with experimental data measured with an on-board sound intensity system.


2013 ◽  
Vol 20 (2) ◽  
pp. 183-190 ◽  
Author(s):  
A. Barna ◽  
I. B. Földes ◽  
Z. Gingl ◽  
R. Mingesz

Abstract In experiments with short-pulse lasers the measurement control of the energy of the laser pulse is of crucial importance. Generally it is difficult to measure the amplitude of the pulses of short-pulse lasers using electronic devices, their response time being longer than the duration of the laser pulses. The electric response of the detector is still too fast to be directly digitized therefore a peak-hold unit can be used to allow data processing for the computer. In this paper we present a device which measures the energy of UV short (fs) pulses shot-byshot, digitizes and sends the data to the PC across an USB interface. The circuit is based on an analog peak detect and hold unit and the use of fiber optical coupling between the PC and the device provides a significant improvement to eliminate potential ground loops and to reduce conductive and radiated noise as well. The full development is open source and has been made available to download from our web page (http://www.noise.inf.u-szeged.hu/Instruments/PeakHold/).


2009 ◽  
Vol 57 (5) ◽  
pp. 507 ◽  
Author(s):  
Won-Ho Joo ◽  
Sung-Hoon Kim ◽  
Jong-Gug Bae ◽  
Suk-Yoon Hong
Keyword(s):  

Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 174
Author(s):  
Johannes Seidel ◽  
Stephan Lippert ◽  
Otto von Estorff

The slightest manufacturing tolerances and variances of material properties can indeed have a significant impact on structural modes. An unintentional shift of eigenfrequencies towards dominant excitation frequencies may lead to increased vibration amplitudes of the structure resulting in radiated noise, e.g., reducing passenger comfort inside an aircraft’s cabin. This paper focuses on so-called non-structural masses of an aircraft, also known as the secondary structure that are attached to the primary structure via clips, brackets, and shock mounts and constitute a significant part of the overall mass of an aircraft’s structure. Using the example of a simplified fuselage panel, the vibro-acoustical consequences of parameter uncertainties in linking elements are studied. Here, the fuzzy arithmetic provides a suitable framework to describe uncertainties, create combination matrices, and evaluate the simulation results regarding target quantities and the impact of each parameter on the overall system response. To assess the vibrations of the fuzzy structure and by taking into account the excitation spectra of engine noise, modal and frequency response analyses are conducted.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1429
Author(s):  
Gang Hu ◽  
Kejun Wang ◽  
Liangliang Liu

Facing the complex marine environment, it is extremely challenging to conduct underwater acoustic target feature extraction and recognition using ship-radiated noise. In this paper, firstly, taking the one-dimensional time-domain raw signal of the ship as the input of the model, a new deep neural network model for underwater target recognition is proposed. Depthwise separable convolution and time-dilated convolution are used for passive underwater acoustic target recognition for the first time. The proposed model realizes automatic feature extraction from the raw data of ship radiated noise and temporal attention in the process of underwater target recognition. Secondly, the measured data are used to evaluate the model, and cluster analysis and visualization analysis are performed based on the features extracted from the model. The results show that the features extracted from the model have good characteristics of intra-class aggregation and inter-class separation. Furthermore, the cross-folding model is used to verify that there is no overfitting in the model, which improves the generalization ability of the model. Finally, the model is compared with traditional underwater acoustic target recognition, and its accuracy is significantly improved by 6.8%.


2021 ◽  
Vol 174 ◽  
pp. 107801
Author(s):  
Jie Shi ◽  
Zhichao Li ◽  
Heying Li ◽  
Yuhan Zhang

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1610
Author(s):  
Gang Hu ◽  
Kejun Wang ◽  
Liangliang Liu

This paper proposes a new detection model of a weak signal based on a third-order chaotic system. Using a dynamic analysis tool, such as the Lyapunov exponent and the bifurcation diagram, variations of dynamic behavior can be observed, and the weak signal underwater can be picked up. In order to improve the observability of detection signals in the time domain and frequency domain, the spectral entropy complexity algorithm (SE) and C0 complexity algorithms are used to analyze and extract the weak signal. The experimental results show that the spectrum extraction based on the complexity algorithm can accurately reflect the dynamic characteristics of the detected signal. It provides the theoretical direction and experimental data support for the application of the chaotic system in the field of acoustic detection.


Sign in / Sign up

Export Citation Format

Share Document