FRI-471-Regorafenib may enhance efficacy of anti-program cell death-1 therapy in hepatocellular carcinoma through modulation of macrophage polarization

2019 ◽  
Vol 70 (1) ◽  
pp. e605-e606 ◽  
Author(s):  
Chia-Wei Chen ◽  
Da-Liang Ou ◽  
Chia-Lang Hsu ◽  
Li Lin ◽  
Ann-Lii Cheng ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nghiem Xuan Hoan ◽  
Pham Thi Minh Huyen ◽  
Mai Thanh Binh ◽  
Ngo Tat Trung ◽  
Dao Phuong Giang ◽  
...  

AbstractThe inhibitory effects of programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) modulates T-cell depletion. T-cell depletion is one of the key mechanisms of hepatitis B virus (HBV) persistence, in particular liver disease progression and the development of hepatocellular carcinoma (HCC). This case–control study aimed to understand the significance of PD-1 polymorphisms (PD-1.5 and PD-1.9) association with HBV infection risk and HBV-induced liver disease progression. Genotyping of PD-1.5 and PD-1.9 variants was performed by direct Sanger sequencing in 682 HBV-infected patients including chronic hepatitis (CHB, n = 193), liver cirrhosis (LC, n = 183), hepatocellular carcinoma (HCC, n = 306) and 283 healthy controls (HC). To analyze the association of PD-1 variants with liver disease progression, a binary logistic regression, adjusted for age and gender, was performed using different genetic models. The PD-1.9 T allele and PD-1.9 TT genotype are significantly associated with increased risk of LC, HCC, and LC + HCC. The frequencies of PD-1.5 TT genotype and PD-1.5 T allele are significantly higher in HCC compared to LC patients. The haplotype CT (PD-1.5 C and PD-1.9 T) was significantly associated with increased risk of LC, HCC, and LC + HCC. In addition, the TC (PD-1.5 T and PD-1.9 C) haplotype was associated with the risk of HCC compared to non-HCC. The PD-1.5 CC, PD-1.9 TT, genotype, and the CC (PD-1.5 C and PD-1.9) haplotype are associated with unfavorable laboratory parameters in chronic hepatitis B patients. PD-1.5 and PD1.9 are useful prognostic predictors for HBV infection risk and liver disease progression.


2021 ◽  
Vol 22 (8) ◽  
pp. 3956
Author(s):  
Yan Li ◽  
Tianyu Tang ◽  
Hae June Lee ◽  
Kiwon Song

Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.


2011 ◽  
Vol 135 (6) ◽  
pp. 780-788 ◽  
Author(s):  
Robert J. Homer ◽  
Jack A. Elias ◽  
Chun Gun Lee ◽  
Erica Herzog

Abstract Context.—Idiopathic pulmonary fibrosis is a uniformly lethal disease with limited biomarkers and no proven therapeutic intervention short of lung transplantation. Pulmonary fibrosis at one time was thought to be a result of inflammation in the lung. Although some forms of pulmonary fibrosis may result from inflammation, idiopathic pulmonary fibrosis is currently thought to result from cell death primarily and inflammation secondarily. Objective.—To determine the role of inflammation in pulmonary fibrosis in light of our laboratory's published and unpublished research and published literature. Data Sources.—Review based on our laboratory's published and unpublished experimental data with relevant background and clinical context provided. Conclusions.—Although cell death is central to pulmonary fibrosis, the proper cytokine environment leading to macrophage polarization is also critical. Evaluation of this environment is promising both for the development of disease biomarkers and for targets for therapeutic intervention.


2016 ◽  
Vol 69 ◽  
pp. S87
Author(s):  
J. Soukupova ◽  
U.U. Urricelqui ◽  
M. Borgmann ◽  
H. Kohlhof ◽  
I. Fabregat

Oncotarget ◽  
2014 ◽  
Vol 5 (13) ◽  
pp. 4845-4854 ◽  
Author(s):  
Yu-Jen Chen ◽  
Chih-Wen Chi ◽  
Wen-Chi Su ◽  
Huey-Lan Huang

Sign in / Sign up

Export Citation Format

Share Document