scholarly journals PULMONARY ARTERIAL WALL SHEAR STRESS AND ITS IMPACT ON RIGHT VENTRICULAR FUNCTION IN PULMONARY ARTERIAL HYPERTENSION: PRELIMINARY ASSESSMENT BY COMPUTATIONAL FLUID DYNAMICS

2013 ◽  
Vol 61 (10) ◽  
pp. E1267
Author(s):  
Triston BBJ Smith ◽  
Vitaly O. Kheyfets ◽  
Theodore Schroeder ◽  
Jennifer Spotti ◽  
Anthony Zikos ◽  
...  
Author(s):  
Shahab Taherian ◽  
Hamid Rahai ◽  
Jamie Shin ◽  
Jeremy Feldman ◽  
Thomas Waddington

In silico study of the relationships between flow conditions, arterial surface shear stress, and pressure was investigated in a patient with pulmonary arterial hypertension (PAH), using multi-detector Computed Tomography Angiography (CTA) images and Computational Fluid Dynamics (CFD). The CTA images were converted into 3D models and transferred to CFD software for simulations, allowing for patient-specific comparisons between in silico results with clinical right heart catheterization pressure data. The simulations were performed using two different methods of outlet boundary conditions: zero traction and lumped parameter model (LPM) methods. Outlet pressures were set to a constant value in zero traction method, which can produce flow characteristics solely based on the segmented distal arteries, while the lumped parameter model used a three-element Windkessel lumped model to represent the distal vasculature by accounting for resistance, compliance, and impedance of the vasculature. Considering existing limitations with both approaches, it was found that the lumped parameter Windkessel outlet boundary condition provides a better correlation with the clinical RHC pressure results than the zero traction constant pressure outlet boundary condition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyeon Oh ◽  
Albert Y. Jang ◽  
Sehyun Chae ◽  
Seungbum Choi ◽  
Jeongsik Moon ◽  
...  

AbstractDespite the advancement of targeted therapy for pulmonary arterial hypertension (PAH), poor prognosis remains a reality. Mesenchymal stem cells (MSCs) are one of the most clinically feasible alternative treatment options. We compared the treatment effects of adipose tissue (AD)-, bone marrow (BD)-, and umbilical cord blood (UCB)-derived MSCs in the rat monocrotaline-induced pulmonary hypertension (PH) model. The greatest improvement in the right ventricular function was observed in the UCB-MSCs treated group. The UCB-MSCs treated group also exhibited the greatest improvement in terms of the largest decrease in the medial wall thickness, perivascular fibrosis, and vascular cell proliferation, as well as the lowest levels of recruitment of innate and adaptive immune cells and associated inflammatory cytokines. Gene expression profiling of lung tissue confirmed that the UCB-MSCs treated group had the most notably attenuated immune and inflammatory profiles. Network analysis further revealed that the UCB-MSCs group had the greatest therapeutic effect in terms of the normalization of all three classical PAH pathways. The intravenous injection of the UCB-MSCs, compared with those of other MSCs, showed superior therapeutic effects in the PH model for the (1) right ventricular function, (2) vascular remodeling, (3) immune/inflammatory profiles, and (4) classical PAH pathways.


Sign in / Sign up

Export Citation Format

Share Document