THE IMPACT OF PRENATAL DRUG EXPOSURE ON THE NEONATE

1998 ◽  
Vol 25 (1) ◽  
pp. 169-194 ◽  
Author(s):  
Carol L. Wagner ◽  
Lakshmi D. Katikaneni ◽  
Toby H. Cox ◽  
Rita M. Ryan
2015 ◽  
Vol 9s2 ◽  
pp. SART.S23544 ◽  
Author(s):  
Carolien Konijnenberg

Prenatal drug exposure is a common public health concern that can result in perinatal complications, birth defects, and developmental disorders. The growing literature regarding the effects of prenatal exposure to specific drugs such as tobacco, alcohol, cocaine, and heroin is often conflicting and constantly changing. This review discusses several reasons why the effects of prenatal drug exposure are so difficult to determine, including variations in dose, timing, duration of exposure, polydrug use, unreliable measures of drug exposure, latent or “sleeper” effects, genetic factors, and socioenvironmental influences. In addition to providing research guidelines, this review also aims to help clinicians and policy makers to identify the strengths and weaknesses in studies investigating the effects of prenatal drug exposure. This knowledge may be used to make better informed decisions regarding the appropriate treatment for pregnant, drug-dependent women and their children.


2022 ◽  
Vol 12 ◽  
Author(s):  
Aleksandra M. Mech ◽  
Munise Merteroglu ◽  
Ian M. Sealy ◽  
Muy-Teck Teh ◽  
Richard J. White ◽  
...  

Developmental consequences of prenatal drug exposure have been reported in many human cohorts and animal studies. The long-lasting impact on the offspring—including motor and cognitive impairments, cranial and cardiac anomalies and increased prevalence of ADHD—is a socioeconomic burden worldwide. Identifying the molecular changes leading to developmental consequences could help ameliorate the deficits and limit the impact. In this study, we have used zebrafish, a well-established behavioral and genetic model with conserved drug response and reward pathways, to identify changes in behavior and cellular pathways in response to developmental exposure to amphetamine, nicotine or oxycodone. In the presence of the drug, exposed animals showed altered behavior, consistent with effects seen in mammalian systems, including impaired locomotion and altered habituation to acoustic startle. Differences in responses seen following acute and chronic exposure suggest adaptation to the presence of the drug. Transcriptomic analysis of exposed larvae revealed differential expression of numerous genes and alterations in many pathways, including those related to cell death, immunity and circadian rhythm regulation. Differential expression of circadian rhythm genes did not correlate with behavioral changes in the larvae, however, two of the circadian genes, arntl2 and per2, were also differentially expressed at later stages of development, suggesting a long-lasting impact of developmental exposures on circadian gene expression. The immediate-early genes, egr1, egr4, fosab, and junbb, which are associated with synaptic plasticity, were downregulated by all three drugs and in situ hybridization showed that the expression for all four genes was reduced across all neuroanatomical regions, including brain regions implicated in reward processing, addiction and other psychiatric conditions. We anticipate that these early changes in gene expression in response to drug exposure are likely to contribute to the consequences of prenatal exposure and their discovery might pave the way to therapeutic intervention to ameliorate the long-lasting deficits.


1997 ◽  
Vol 27 (3) ◽  
pp. 525-539 ◽  
Author(s):  
Merith Cosden ◽  
Stacey Peerson ◽  
Katherine Elliott

Public attention has been drawn to the needs of children who have been exposed to drugs, alcohol, and tobacco in utero. Despite initial concerns that prenatal substance exposure could have global and permanent effects, current research suggests that many of these children do not have significant birth outcomes. Developmental outcomes are also mixed. This paper presents a review of the literature on the impact of prenatal drug exposure on infants and young children. In addition, birth outcome and development data are presented on 80 children who were exposed to multiple substances in utero and who were with their mothers in a treatment facility. Both intra-uterine and extra-uterine factors related to children's outcomes are discussed.


1998 ◽  
Vol 43 (6) ◽  
pp. 582-584 ◽  
Author(s):  
Benedetto Vitiello

With increasing frequency, psychotropic medications are being prescribed to young children, often for long periods of time. The interaction between psychotropics and the developing brain has not been systematically investigated in humans. Data collected from animals suggest that developing neurotransmitter systems can be exquisitely sensitive to early inhibition or stimulation by pharmacological agents, which can lead to permanent changes in adult life. Most of these data are collected from rodents, and their extrapolation to humans is difficult. More relevant models could be developed, for instance using primates. In humans, the focus of research has traditionally been on the possible teratogenic effects of prenatal drug exposure. Recently introduced quantitative imaging techniques can offer new approaches to studying the effects of psychotropics on the developing brain. This research has clear implications for the safety and efficacy of psychopharmacologic drug use in children.


2004 ◽  
Vol 10 (2) ◽  
pp. 89-101 ◽  
Author(s):  
Margaret B. Pulsifer ◽  
Krestin Radonovich ◽  
Harolyn M.E. Belcher ◽  
Arlene M. Butz

1998 ◽  
Vol 5 (4) ◽  
pp. 190-191 ◽  
Author(s):  
Robbin R. Eldridge ◽  
Sara A. Ephross ◽  
Cindy R. Heffner ◽  
Patricia S. Tennis ◽  
Dr.Monika Stender ◽  
...  

Author(s):  
Clifford Nangle ◽  
Stuart McTaggart ◽  
Margaret MacLeod ◽  
Jackie Caldwell ◽  
Marion Bennie

ABSTRACT ObjectivesThe Prescribing Information System (PIS) datamart, hosted by NHS National Services Scotland receives around 90 million electronic prescription messages per year from GP practices across Scotland. Prescription messages contain information including drug name, quantity and strength stored as coded, machine readable, data while prescription dose instructions are unstructured free text and difficult to interpret and analyse in volume. The aim, using Natural Language Processing (NLP), was to extract drug dose amount, unit and frequency metadata from freely typed text in dose instructions to support calculating the intended number of days’ treatment. This then allows comparison with actual prescription frequency, treatment adherence and the impact upon prescribing safety and effectiveness. ApproachAn NLP algorithm was developed using the Ciao implementation of Prolog to extract dose amount, unit and frequency metadata from dose instructions held in the PIS datamart for drugs used in the treatment of gastrointestinal, cardiovascular and respiratory disease. Accuracy estimates were obtained by randomly sampling 0.1% of the distinct dose instructions from source records, comparing these with metadata extracted by the algorithm and an iterative approach was used to modify the algorithm to increase accuracy and coverage. ResultsThe NLP algorithm was applied to 39,943,465 prescription instructions issued in 2014, consisting of 575,340 distinct dose instructions. For drugs used in the gastrointestinal, cardiovascular and respiratory systems (i.e. chapters 1, 2 and 3 of the British National Formulary (BNF)) the NLP algorithm successfully extracted drug dose amount, unit and frequency metadata from 95.1%, 98.5% and 97.4% of prescriptions respectively. However, instructions containing terms such as ‘as directed’ or ‘as required’ reduce the usability of the metadata by making it difficult to calculate the total dose intended for a specific time period as 7.9%, 0.9% and 27.9% of dose instructions contained terms meaning ‘as required’ while 3.2%, 3.7% and 4.0% contained terms meaning ‘as directed’, for drugs used in BNF chapters 1, 2 and 3 respectively. ConclusionThe NLP algorithm developed can extract dose, unit and frequency metadata from text found in prescriptions issued to treat a wide range of conditions and this information may be used to support calculating treatment durations, medicines adherence and cumulative drug exposure. The presence of terms such as ‘as required’ and ‘as directed’ has a negative impact on the usability of the metadata and further work is required to determine the level of impact this has on calculating treatment durations and cumulative drug exposure.


Sign in / Sign up

Export Citation Format

Share Document