Thermal degradation of IM7/BMI5260 composite materials: characterization by X-ray photoelectron spectroscopy

2000 ◽  
Vol 293 (1-2) ◽  
pp. 88-94 ◽  
Author(s):  
Satomi Ohno ◽  
Moon-Hwan Lee ◽  
Kuen Y Lin ◽  
Fumio S Ohuchi
BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8134-8159
Author(s):  
Rico John ◽  
Katja Trommler ◽  
Katja Schreiter ◽  
Carolin Siegel ◽  
Frank Simon ◽  
...  

Wood veneer/biopolyethylene (bio-PE) biocomposite materials were produced by using poly(N-vinylformamide-co-vinylamine) (PVFA-co-PVAm) copolymers as a phase-mediating reagent. In a preliminary step, PVFA-co-PVAm was adsorbed onto the wood veneer component from aqueous solution. In its adsorbed form, it served as an adhesion promoter and improved the compatibility between both the highly polar wood veneer and weakly polar bio-PE surface. Structural parameters and their effect on the adsorption process, such as the degree of hydrolysis (DH) of poly(N-vinylformamide) (PVFA) (30, 50, and > 90%), the molecular weight of PVFA-co-PVAm (Mw 10,000, 45,000, or 340,000 g/mol), and the pH value (4, 7, and 11) influenced the resulting wetting behavior of the PVFA-co-PVAm-modified wood veneer surface. Thus, the hydrophobizing effect of the PVFA-co-PVAm was clearly detectable because the contact angle with water was considerably increased up to 116° by adsorption of PVFA-co-PVAm 9095 at pH 11. The adsorbed amount of PVFA-co-PVAm was determined by energy-dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS). The PVFA-co-PVAm-coated wood veneers were consolidated with bio-PE in a hot press process. The modified composite materials showed remarkably improved Young’s moduli (552 MPa) and tensile strengths (4.5 MPa) compared to former composite materials produced without PVFA-co-PVAm modification.


2017 ◽  
Vol 29 (10) ◽  
pp. 4162-4166 ◽  
Author(s):  
Susanna L. Bergman ◽  
Girija S. Sahasrabudhe ◽  
Huiwen Ji ◽  
Robert J. Cava ◽  
Steven L. Bernasek

2011 ◽  
Vol 284-286 ◽  
pp. 597-600
Author(s):  
Dai Mei Chen ◽  
Hai Peng Ji ◽  
Jian Xin Wang ◽  
Jian Chen ◽  
Xin Long Luan ◽  
...  

Nitrogen doped TiO2/sepiolite composite materials (N-TiO2/sep) with different nitrogen contents were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), respectively. XRD and SEM results showed that anatase-TiO2nanoparticles were distributed homogenously on the surface of sepiolite. XPS revealed that N atoms could incorporate into the lattice of anatase TiO2substituting the oxygen atoms sites of oxygen atoms.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2628
Author(s):  
Mariia Stepanova ◽  
Olga Solomakha ◽  
Maxim Rabchinskii ◽  
Ilia Averianov ◽  
Iosif Gofman ◽  
...  

Biodegradable and biocompatible composites are of great interest as biomedical materials for various regeneration processes such as the regeneration of bones, cartilage and soft tissues. Modification of the filler surface can improve its compatibility with the polymer matrix, and, as a result, the characteristics and properties of composite materials. This work is devoted to the synthesis and modification of aminated graphene with oligomers of glutamic acid and their use for the preparation of composite materials based on poly(ε-caprolactone). Ring-opening polymerization of N-carboxyanhydride of glutamic acid γ-benzyl ester was used to graft oligomers of glutamic acid from the surface of aminated graphene. The success of the modification was confirmed by Fourier-transform infrared and X-ray photoelectron spectroscopy as well as thermogravimetric analysis. In addition, the dispersions of neat and modified aminated graphene were analyzed by dynamic and electrophoretic light scattering to monitor changes in the characteristics due to modification. The poly(ε-caprolactone) films filled with neat and modified aminated graphene were manufactured and carefully characterized for their mechanical and biological properties. Grafting of glutamic acid oligomers from the surface of aminated graphene improved the distribution of the filler in the polymer matrix that, in turn, positively affected the mechanical properties of composite materials in comparison to ones containing the unmodified filler. Moreover, the modification improved the biocompatibility of the filler with human MG-63 osteoblast-like cells.


2011 ◽  
Vol 19 (2) ◽  
pp. 22-28 ◽  
Author(s):  
Tim Nunney ◽  
Richard White

In order to meet the challenges of more economical and environmentally benign energy production, a new generation of complex materials and devices are being developed, including thin film solar cells, fuel cells, and batteries. In all stages of development there is a requirement for materials characterization and analysis, from the initial development stages through to testing of the finished product. Most materials need to be analyzed for compositional homogeneity across surfaces and also for confirmation of film thickness and layer chemistry.


2006 ◽  
Vol 12 (S02) ◽  
pp. 118-119
Author(s):  
D Surman

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2005


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940055 ◽  
Author(s):  
Yu-Wei Huang ◽  
Yu-Jiang Wang ◽  
Shi-Cheng Wei ◽  
Yi Liang ◽  
Wei Huang ◽  
...  

Graphene/Fe3O4/Ni nano-composite materials were prepared by one-step hydrothermal method from RGO, FeCl3 ⋅ 6H2O and purity Ni. The structure and electromagnetic microwave absorbing properties were investigated systematically by field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and vector network analyzer (VNA). The reflectance was simulated based on the electromagnetic parameters to evaluate the absorption properties of the sample. The results show that Fe3O4 and Ni are on the surface of graphene evenly, the composites exhibit excellent microwave absorption properties, reflection loss and broad effective absorption bandwidth are −16.38 dB and 3.60 GHz, as the paraffin wax is 40% and the matching thickness is 2.00–3.50 mm.


2004 ◽  
Vol 94 (4) ◽  
pp. 1705-1709 ◽  
Author(s):  
Gangping Wu ◽  
Chunxiang Lu ◽  
Xueping Wu ◽  
Shouchun Zhang ◽  
Fu He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document