Charge compensation of composite materials using Os coating in X-ray photoelectron spectroscopy

2004 ◽  
Vol 229 (1-4) ◽  
pp. 242-248 ◽  
Author(s):  
Y Mori ◽  
S Tanemura
BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8134-8159
Author(s):  
Rico John ◽  
Katja Trommler ◽  
Katja Schreiter ◽  
Carolin Siegel ◽  
Frank Simon ◽  
...  

Wood veneer/biopolyethylene (bio-PE) biocomposite materials were produced by using poly(N-vinylformamide-co-vinylamine) (PVFA-co-PVAm) copolymers as a phase-mediating reagent. In a preliminary step, PVFA-co-PVAm was adsorbed onto the wood veneer component from aqueous solution. In its adsorbed form, it served as an adhesion promoter and improved the compatibility between both the highly polar wood veneer and weakly polar bio-PE surface. Structural parameters and their effect on the adsorption process, such as the degree of hydrolysis (DH) of poly(N-vinylformamide) (PVFA) (30, 50, and > 90%), the molecular weight of PVFA-co-PVAm (Mw 10,000, 45,000, or 340,000 g/mol), and the pH value (4, 7, and 11) influenced the resulting wetting behavior of the PVFA-co-PVAm-modified wood veneer surface. Thus, the hydrophobizing effect of the PVFA-co-PVAm was clearly detectable because the contact angle with water was considerably increased up to 116° by adsorption of PVFA-co-PVAm 9095 at pH 11. The adsorbed amount of PVFA-co-PVAm was determined by energy-dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS). The PVFA-co-PVAm-coated wood veneers were consolidated with bio-PE in a hot press process. The modified composite materials showed remarkably improved Young’s moduli (552 MPa) and tensile strengths (4.5 MPa) compared to former composite materials produced without PVFA-co-PVAm modification.


2017 ◽  
Vol 29 (10) ◽  
pp. 4162-4166 ◽  
Author(s):  
Susanna L. Bergman ◽  
Girija S. Sahasrabudhe ◽  
Huiwen Ji ◽  
Robert J. Cava ◽  
Steven L. Bernasek

2011 ◽  
Vol 284-286 ◽  
pp. 597-600
Author(s):  
Dai Mei Chen ◽  
Hai Peng Ji ◽  
Jian Xin Wang ◽  
Jian Chen ◽  
Xin Long Luan ◽  
...  

Nitrogen doped TiO2/sepiolite composite materials (N-TiO2/sep) with different nitrogen contents were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), respectively. XRD and SEM results showed that anatase-TiO2nanoparticles were distributed homogenously on the surface of sepiolite. XPS revealed that N atoms could incorporate into the lattice of anatase TiO2substituting the oxygen atoms sites of oxygen atoms.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2628
Author(s):  
Mariia Stepanova ◽  
Olga Solomakha ◽  
Maxim Rabchinskii ◽  
Ilia Averianov ◽  
Iosif Gofman ◽  
...  

Biodegradable and biocompatible composites are of great interest as biomedical materials for various regeneration processes such as the regeneration of bones, cartilage and soft tissues. Modification of the filler surface can improve its compatibility with the polymer matrix, and, as a result, the characteristics and properties of composite materials. This work is devoted to the synthesis and modification of aminated graphene with oligomers of glutamic acid and their use for the preparation of composite materials based on poly(ε-caprolactone). Ring-opening polymerization of N-carboxyanhydride of glutamic acid γ-benzyl ester was used to graft oligomers of glutamic acid from the surface of aminated graphene. The success of the modification was confirmed by Fourier-transform infrared and X-ray photoelectron spectroscopy as well as thermogravimetric analysis. In addition, the dispersions of neat and modified aminated graphene were analyzed by dynamic and electrophoretic light scattering to monitor changes in the characteristics due to modification. The poly(ε-caprolactone) films filled with neat and modified aminated graphene were manufactured and carefully characterized for their mechanical and biological properties. Grafting of glutamic acid oligomers from the surface of aminated graphene improved the distribution of the filler in the polymer matrix that, in turn, positively affected the mechanical properties of composite materials in comparison to ones containing the unmodified filler. Moreover, the modification improved the biocompatibility of the filler with human MG-63 osteoblast-like cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2993
Author(s):  
Danil V. Sivkov ◽  
Olga V. Petrova ◽  
Sergey V. Nekipelov ◽  
Alexander S. Vinogradov ◽  
Roman N. Skandakov ◽  
...  

The results of the research of a composite based on multi-walled carbon nanotubes (MWCNTs) decorated with CuO/Cu2O/Cu nanoparticles deposited by the cupric formate pyrolysis are discussed. The study used a complementary set of methods, including scanning and transmission electron microscopy, X-ray diffractometry, Raman, and ultrasoft X-ray spectroscopy. The investigation results show the good adhesion between the copper nanoparticles coating and the MWCNT surface through the oxygen atom bridge formation between the carbon atoms of the MWCNT outer graphene layer and the oxygen atoms of CuO and Cu2O oxides. The formation of the Cu–O–C bond between the coating layer and the outer nanotube surface is clearly confirmed by the results of the O 1s near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) of the Cu/MWCNTs nanocomposite. The XPS measurements were performed using a laboratory spectrometer with sample charge compensation, and the NEXAFS studies were carried out using the synchrotron radiation of the Russian–German dipole beamline at BESSY-II (Berlin, Germany) and the NanoPES station at the Kurchatov Center for Synchrotron Radiation and Nanotechnology (Moscow, Russia).


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 374 ◽  
Author(s):  
Danil Sivkov ◽  
Olga Petrova ◽  
Alena Mingaleva ◽  
Anatoly Ob’edkov ◽  
Boris Kaverin ◽  
...  

The paper is devoted to the structure and properties of the composite material based on multi-walled carbon nanotubes (MWCNTs) covered with pyrolytic iron and chromium. Fe/MWCNTs and Cr/MWCNTs nanocomposites have been prepared by the metal organic chemical vapor deposition (MOCVD) growth technique using iron pentacarbonyl and bis(arene)chromium compounds, respectively. Composites structures and morphologies preliminary study were performed using X-ray diffraction, scanning and transmission electron microscopy and Raman scattering. The atomic and chemical composition of the MWCNTs’ surface, Fe-coating and Cr-coating and interface—(MWCNTs surface)/(metal coating) were studied by total electron yield method in the region of near-edge X-ray absorption fine structure (NEXAFS) C1s, Fe2p and Cr2p absorption edges using synchrotron radiation of the Russian-German dipole beamline (RGBL) at BESSY-II and the X-ray photoelectron spectroscopy (XPS) method using the ESCALAB 250 Xi spectrometer and charge compensation system. The absorption cross sections in the NEXAFS C1s edge of the nanocomposites and MWCNTs were measured using the developed approach of suppressing and estimating the contributions of the non-monochromatic background and multiple reflection orders radiation from the diffraction grating. The efficiency of the method was demonstrated by the example of the Cr/MWCNT nanocomposite, since its Cr2p NEXAFS spectra contain additional C1s NEXAFS in the second diffraction order. The study has shown that the MWCNTs’ top layers in composite have no significant destruction; the MWCNTs’ metal coatings are continuous and consist of Fe3O4 and Cr2O3. It is shown that the interface between the MWCNTs and pyrolytic Fe and Cr coatings has a multilayer structure: a layer in which carbon atoms along with epoxy –C–O–C– bonds form bonds with oxygen and metal atoms from the coating layer is formed on the outer surface of the MWCNT, a monolayer of metal carbide above it and an oxide layer on top. The iron oxide and chromium oxide adhesion is provided by single, double and epoxy chemical binding formation between carbon atoms of the MWCNT top layer and the oxygen atoms of the coating, as well as the formation of bonds with metal atoms.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940055 ◽  
Author(s):  
Yu-Wei Huang ◽  
Yu-Jiang Wang ◽  
Shi-Cheng Wei ◽  
Yi Liang ◽  
Wei Huang ◽  
...  

Graphene/Fe3O4/Ni nano-composite materials were prepared by one-step hydrothermal method from RGO, FeCl3 ⋅ 6H2O and purity Ni. The structure and electromagnetic microwave absorbing properties were investigated systematically by field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and vector network analyzer (VNA). The reflectance was simulated based on the electromagnetic parameters to evaluate the absorption properties of the sample. The results show that Fe3O4 and Ni are on the surface of graphene evenly, the composites exhibit excellent microwave absorption properties, reflection loss and broad effective absorption bandwidth are −16.38 dB and 3.60 GHz, as the paraffin wax is 40% and the matching thickness is 2.00–3.50 mm.


2020 ◽  
Vol 10 (14) ◽  
pp. 4736
Author(s):  
Danil Sivkov ◽  
Sergey Nekipelov ◽  
Olga Petrova ◽  
Alexander Vinogradov ◽  
Alena Mingaleva ◽  
...  

Currently, X-ray photoelectron spectroscopy (XPS) is widely used to characterize the nanostructured material surface. The ability to determine the atom distribution and chemical state with depth without the sample destruction is important for studying the internal structure of the coating layer several nanometers thick, and makes XPS the preferable tool for the non-destructive testing of nanostructured systems. In this work, ultra-soft X-ray spectroscopy methods are used to study hidden layers and interfaces of pyrolytic tungsten carbide nanoscale coatings on the multi-walled carbon nanotube (MWCNT) surfaces. XPS measurements were performed using laboratory spectrometers with sample charge compensation, and Near Edge X-ray Absorption Fine Structure (NEXAFS) studies using the Russian–German dipole beamline (RGBL) synchrotron radiation at BESSY-II. The studied samples were tested by scanning and transmission electron microscopy, X-ray diffractometry, Raman scattering and NEXAFS spectroscopy. It was shown that the interface between MWCNT and the pyrolytic coating of tungsten carbide has a three-layer structure: (i) an interface layer consisting of the outer graphene layer carbon atoms, forming bonds with oxygen atoms from the oxides adsorbed on the MWCNT surface, and tungsten atoms from the coating layer; (ii) a non-stoichiometric tungsten carbide WC1-x nanoscale particles layer; (iii) a 3.3 nm thick non-stoichiometric tungsten oxide WO3-x layer on the WC1-x/MWCNT nanocomposite outer surface, formed in air. The tungsten carbide nanosized particle’s adhesion to the nanotube outer surface is ensured by the formation of a chemical bond between the carbon atoms from the MWCNT upper layer and the tungsten atoms from the coating layer.


Sign in / Sign up

Export Citation Format

Share Document