scholarly journals Aminated Graphene-Graft-Oligo(Glutamic Acid) /Poly(ε-Caprolactone) Composites: Preparation, Characterization and Biological Evaluation

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2628
Author(s):  
Mariia Stepanova ◽  
Olga Solomakha ◽  
Maxim Rabchinskii ◽  
Ilia Averianov ◽  
Iosif Gofman ◽  
...  

Biodegradable and biocompatible composites are of great interest as biomedical materials for various regeneration processes such as the regeneration of bones, cartilage and soft tissues. Modification of the filler surface can improve its compatibility with the polymer matrix, and, as a result, the characteristics and properties of composite materials. This work is devoted to the synthesis and modification of aminated graphene with oligomers of glutamic acid and their use for the preparation of composite materials based on poly(ε-caprolactone). Ring-opening polymerization of N-carboxyanhydride of glutamic acid γ-benzyl ester was used to graft oligomers of glutamic acid from the surface of aminated graphene. The success of the modification was confirmed by Fourier-transform infrared and X-ray photoelectron spectroscopy as well as thermogravimetric analysis. In addition, the dispersions of neat and modified aminated graphene were analyzed by dynamic and electrophoretic light scattering to monitor changes in the characteristics due to modification. The poly(ε-caprolactone) films filled with neat and modified aminated graphene were manufactured and carefully characterized for their mechanical and biological properties. Grafting of glutamic acid oligomers from the surface of aminated graphene improved the distribution of the filler in the polymer matrix that, in turn, positively affected the mechanical properties of composite materials in comparison to ones containing the unmodified filler. Moreover, the modification improved the biocompatibility of the filler with human MG-63 osteoblast-like cells.

BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8134-8159
Author(s):  
Rico John ◽  
Katja Trommler ◽  
Katja Schreiter ◽  
Carolin Siegel ◽  
Frank Simon ◽  
...  

Wood veneer/biopolyethylene (bio-PE) biocomposite materials were produced by using poly(N-vinylformamide-co-vinylamine) (PVFA-co-PVAm) copolymers as a phase-mediating reagent. In a preliminary step, PVFA-co-PVAm was adsorbed onto the wood veneer component from aqueous solution. In its adsorbed form, it served as an adhesion promoter and improved the compatibility between both the highly polar wood veneer and weakly polar bio-PE surface. Structural parameters and their effect on the adsorption process, such as the degree of hydrolysis (DH) of poly(N-vinylformamide) (PVFA) (30, 50, and > 90%), the molecular weight of PVFA-co-PVAm (Mw 10,000, 45,000, or 340,000 g/mol), and the pH value (4, 7, and 11) influenced the resulting wetting behavior of the PVFA-co-PVAm-modified wood veneer surface. Thus, the hydrophobizing effect of the PVFA-co-PVAm was clearly detectable because the contact angle with water was considerably increased up to 116° by adsorption of PVFA-co-PVAm 9095 at pH 11. The adsorbed amount of PVFA-co-PVAm was determined by energy-dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS). The PVFA-co-PVAm-coated wood veneers were consolidated with bio-PE in a hot press process. The modified composite materials showed remarkably improved Young’s moduli (552 MPa) and tensile strengths (4.5 MPa) compared to former composite materials produced without PVFA-co-PVAm modification.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 169
Author(s):  
Barbara Burnat ◽  
Patrycja Olejarz ◽  
Damian Batory ◽  
Michal Cichomski ◽  
Marta Kaminska ◽  
...  

The aim of this study was to develop a multifunctional biomedical coating that is highly corrosion resistant, biocompatible, and reveals the bioactive properties. For that purpose, titanium dioxide coatings doubly-doped with Ca and Ag ions were deposited by dip-coating onto M30NW biomedical steel. The influence of different ratios of Ca and Ag dopants on morphology, surface structure, corrosion resistance, bioactivity, wettability, and biological properties of TiO2-based sol-gel coatings was studied and discussed. Comprehensive measurements were performed including atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray reflectivity (XRR), corrosion tests, immersion test, contact angle, as well as biological evaluation. The obtained results confirmed that anatase-based coatings containing Ca and Ag ions, independently of their molar ratio in the coating, are anticorrosive, hydrophilic, and bioactive. The results of the biological evaluation indicated that investigated coatings are biocompatible and do not reduce the proliferation ability of the osteoblasts cells.


2020 ◽  
Vol 21 (14) ◽  
pp. 4888
Author(s):  
Karolina Kosowska ◽  
Patrycja Domalik-Pyzik ◽  
Małgorzata Sekuła-Stryjewska ◽  
Sylwia Noga ◽  
Joanna Jagiełło ◽  
...  

In this study, we investigated preparation of gradient chitosan-matrix hydrogels through a novel freezing–gelling–thawing method. The influence of three types of graphene family materials (GFM), i.e., graphene oxide (GO), reduced graphene oxide (rGO), and poly(ethylene glycol) grafted graphene oxide (GO-PEG), as well as hydroxyapatite (HAp) on the physicochemical and biological properties of the composite hydrogels was examined in view of their potential applicability as tissue engineering scaffolds. The substrates and the hydrogel samples were thoroughly characterized by X-ray photoelectron spectroscopy, X-ray diffractometry, infrared spectroscopy, digital and scanning electron microscopy, rheological and mechanical analysis, in vitro chemical stability and bioactivity assays, as well as initial cytocompatibility evaluation with human umbilical cord Wharton’s jelly mesenchymal stem cells (hUC-MSCs). We followed the green-chemistry approach and avoided toxic cross-linking agents, using instead specific interactions of our polymer matrix with tannic acid, non-toxic physical cross-linker, and graphene derivatives. It was shown that the most promising are the gradient hydrogels modified with GO-PEG and HAp.


2017 ◽  
Vol 29 (10) ◽  
pp. 4162-4166 ◽  
Author(s):  
Susanna L. Bergman ◽  
Girija S. Sahasrabudhe ◽  
Huiwen Ji ◽  
Robert J. Cava ◽  
Steven L. Bernasek

2011 ◽  
Vol 284-286 ◽  
pp. 597-600
Author(s):  
Dai Mei Chen ◽  
Hai Peng Ji ◽  
Jian Xin Wang ◽  
Jian Chen ◽  
Xin Long Luan ◽  
...  

Nitrogen doped TiO2/sepiolite composite materials (N-TiO2/sep) with different nitrogen contents were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), respectively. XRD and SEM results showed that anatase-TiO2nanoparticles were distributed homogenously on the surface of sepiolite. XPS revealed that N atoms could incorporate into the lattice of anatase TiO2substituting the oxygen atoms sites of oxygen atoms.


2000 ◽  
Vol 642 ◽  
Author(s):  
Robert F. Mulligan ◽  
Agis A. Iliadis ◽  
U. Lee ◽  
Peter Kofinas

ABSTRACTThe synthesis of self-assembled ZnO nanostructures at room temperature using a microphase separated diblock copolymer as a template is reported. Poly(norbornene) / poly(norbornene-dicarboxylic acid) diblock copolymers were synthesized using Ring Opening Metathesis Polymerization (ROMP). The polymers were dissolved and the solutions were doped with ZnCl2. Films were formed from this solution, and subsequently reacted with NH4OH. This converted the ZnCl2 into ZnO contained within the microphase-separated nanodomains of the block copolymer. Fourier Transform Infrared Spectroscopy verified the association of the metal to the second block of the polymer, and X-ray Photoelectron Spectroscopy verified the conversion of the salt to ZnO nanoclusters. The development of such ZnO - block copolymer nanocomposites is targeting the functionalization of nanostructures into device technologies.


2021 ◽  
Author(s):  
Anandhan Narayanasamy ◽  
Panneerselvam Ramaswamy ◽  
Poonguzhali Ramaswamy ◽  
Amali Roselin Arockiam ◽  
Joseph Panneerdoss Issac ◽  
...  

Abstract In the present work, the wet-chemical precipitation technique is employed to prepare Zinc/Magnesium doped hydroxyapatite (HAP). In doped HAP, the X-ray diffraction peak shifts to a higher angle because of the contraction of the lattice parameters along a - axis. The Raman peaks at 519, 440, 1464 cm-1 indicate the presence of Mg, Zn and CO32- in doped HAP respectively. The Field Emission Scanning Electron Microscopy (FESEM) measures the grain size of pure, 5% Zn and 5% Mg doped HAP, as 275, 510, and 251 nm respectively. Transmission Electron Microscopy (TEM) confirmed the morphological change in HAP. The X-ray photoelectron spectroscopy (XPS) identifies the presence of Mg2+ and Zn2+ in doped HAP. The dopant elevates the hardness and dielectric constant, so the strength and the bone growth of HAP increases. All the doped samples show excellent antibacterial, antifungal and antibiofilm activities than the pure HAP.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1035 ◽  
Author(s):  
Wensheng Lin ◽  
Xiaoyong Hu ◽  
Xueqing You ◽  
Yingying Sun ◽  
Yueqin Wen ◽  
...  

Dodecyltrimethoxysilane (DTMOS), which is a silanation modifier, was grafted onto nanocellulose crystals (NCC) through a two-step method using KH560 (ɤ-(2,3-epoxyproxy)propytrimethoxysilane) as a linker to improve the hydrophobicity of NCC. The reaction mechanism of NCC with KH560 and DTMOS and its surface chemical characteristics were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and HCl–acetone titration. These analyses confirmed that KH560 was grafted onto the surface of NCC through the ring-opening reaction, before DTMOS was covalently grafted onto the surface of NCC using KH560 as a linker. The grafting of NCC with DTMOS resulted in an improvement in its hydrophobicity due to an increase in its water contact angle from 0° to about 140°. In addition, the modified NCC also possessed enhanced thermal stability.


Sign in / Sign up

Export Citation Format

Share Document