scholarly journals An experimental and numerical study of particle size distribution effects on the sintering of porous ceramics

2003 ◽  
Vol 348 (1-2) ◽  
pp. 76-83 ◽  
Author(s):  
Ken Darcovich ◽  
Floyd Toll ◽  
Pierre Hontanx ◽  
Virginie Roux ◽  
Kazunari Shinagawa
2022 ◽  
pp. 1-15
Author(s):  
Lu Lee ◽  
Arash Dahi Taleghani

Summary Lost circulation materials (LCMs) are essential to combat fluid loss while drilling and may put the whole operation at risk if a proper LCM design is not used. The focus of this research is understanding the function of LCMs in sealing fractures to reduce fluid loss. One important consideration in the success of fracture sealing is the particle-size distribution (PSD) of LCMs. Various studies have suggested different guidelines for obtaining the best size distribution of LCMs for effective fracture sealing based on limited laboratory experiments or field observations. Hence, there is a need for sophisticated numerical methods to improve the LCM design by providing some predictive capabilities. In this study, computational fluid dynamics (CFD) and discrete element methods (DEM) numerical simulations are coupled to investigate the influence of PSD of granular LCMs on fracture sealing. Dimensionless variables were introduced to compare cases with different PSDs. We validated the CFD-DEM model in reproducing specific laboratory observations of fracture-sealing experiments within the model boundary parameters. Our simulations suggested that a bimodally distributed blend would be the most effective design in comparison to other PSDs tested here.


Author(s):  
C. A. Ho ◽  
M. Sommerfeld

Numerical calculations of multiphase flow processes become of increasing importance for process analysis and optimization. For predicting the particle separation in a gas cyclone, the well known Euler/Lagrange approach is most suitable. With this method it is possible to account for the particle size distribution and transport processes such as particle-wall and inter-particle collisions.


2000 ◽  
Vol 415 ◽  
pp. 45-64 ◽  
Author(s):  
WALTER C. READE ◽  
LANCE R. COLLINS

Coagulation and growth of aerosol particles subject to isotropic turbulence has been explored using direct numerical simulations. The computations follow the trajectories of 262 144 initial particles as they are convected by the turbulent flow field. Collision between two parent particles leads to the formation of a new daughter particle with the mass and momentum (but not necessarily the energy) of the parent particles. The initially monodisperse population of particles will develop a size distribution over time that is controlled by the collision dynamics. In an earlier study, Sundaram & Collins (1997) showed that collision rates in isotropic turbulence are controlled by two statistics: (i) the radial distribution of the particles and (ii) the relative velocity probability density function. Their study considered particles that rebound elastically; however, we find that the formula that they derived is equally valid in a coagulating system. However, coagulation alters the numerical values of these statistics from the values they attain for the elastic rebound case. This difference is substantial and must be taken into consideration to properly predict the evolution of the size distribution of a population of particles. The DNS results also show surprising trends in the relative breadth of the particle size distribution. First, in all cases, the standard deviation of the particle size distribution of particles with finite Stokes numbers is much larger than the standard deviation for either the zero-Stokes-number or infinite-Stokes-number limits. Secondly, for particles with small initial Stokes numbers, the standard deviation of the final particle size distribution decreases with increasing initial particle size; however, the opposite trend is observed for particles with slightly larger initial Stokes numbers. An explanation for these phenomena can be found by carefully examining the functional dependence of the radial distribution function on the particle size and Stokes number.


2017 ◽  
Author(s):  
Chao Liu ◽  
Chul Eddy Chul ◽  
Yan Yin

Abstract. The Absorption Ångström Exponent (AAE) is an important aerosol optical parameter used for aerosol characterization and apportionment studies. The AAE of black carbon (BC) is widely accepted to be 1.0, although observational estimates give a quite wide range of 0.6~1.1. With considerable uncertainties related to observations, a numerical study is a powerful method, if not the only one, to provide a better and more accurate understanding on BC AAE. This study calculates BC AAE using realistic particle geometries based on fractal aggregate and an accurate numerical optical model (namely the Multiple-Sphere T-Matrix method). At odds with the expectations, BC AAE is not 1.0, even when BC is assumed to have small sizes and a wavelength independent refractive index. With a wavelength independent refractive index, the AAE of fresh BC is approximately 1.05, and is quite insensitive to particle size distribution. BC AAE goes lower when BC particles are aged (compact structures or coated by other scattering materials). For coated BC, we prescribed the coating thickness distribution based on a published experimental study, where smaller BC cores were shown to develop thicker coating than bigger BC cores. Both Compact and Coated BC the AAE ranges, at realistic particle sizes. For both Compact and Coated BC, the AAE is highly sensitive to particle size distribution, ranging from approximately 0.8 to 1.0 for relatively large BC with wavelength-independent refractive index. When the refractive index is allowed to vary with wavelength, a feature with observational backing, the BC AAE shows a much wider range. We propose that the presented results herein serve as a comprehensive guide for the response of BC AAE to BC size, refractive index, and geometry.


Sign in / Sign up

Export Citation Format

Share Document