Roll casting of aluminum alloy strip by melt drag twin roll caster

2001 ◽  
Vol 118 (1-3) ◽  
pp. 165-168 ◽  
Author(s):  
Toshio Haga ◽  
Shinsuke Suzuki
2010 ◽  
Vol 139-141 ◽  
pp. 477-480
Author(s):  
Ryoji Nakamura ◽  
Shuya Hanada ◽  
Shinji Kumai ◽  
Hisaki Watari

An inline hot rolling was operated on 5182 aluminum alloy strip cast using a vertical type high speed caster (VHSTRC) at the speed of 60 m/min. A porosity existing at center line of the thickness and a ripple mark on the surface, these are typical defects of the strip cast by the VHSTRC, could be improved by the inline rolling. The rolling speed was as same as the roll-casting-speed of 60m/min. The temperature of the strip, when the inline rolling was operated, was 450oC. The reduction of the strip of the inline rolling was 35%.


2010 ◽  
Vol 97-101 ◽  
pp. 1057-1060 ◽  
Author(s):  
Ryoji Nakamura ◽  
Masayuki Saito ◽  
Shinji Kumai ◽  
Hisaki Watari

Roll casting of Al-25mass%Si hyper eutectic aluminum alloy strip was tried by an unequal diameter twin roll caster. The casting speed was 10m/min. The thickness of the strip was about 2mm. The eutectic Si and primary crystallized Si were very fine by the effect of the rapid solidification. The size of the primary crystallized Si was not uniform at the thickness direction. The primary crystallized Si at the near surface was finer than that of inside. The eutectic Si was finer than 2μm. The strip could be cold rolled after hot rolling and annealing.


2013 ◽  
Vol 652-654 ◽  
pp. 2427-2431 ◽  
Author(s):  
Xin Su ◽  
G M Xu ◽  
Y H Feng

In this paper, the effect of magnetostatic field on the microstructure and microsegregation of 7075 aluminum alloy strip by twin-roll casting is researched , and the result shows that when no electromagnetic field is applied during the process of roll-casting , the microstructure of 7075 strip is most composed of coarse columnar and dendritic crystal , the direction of grains is equal to roll-casting direction. When the magnetostatic field with 0.13T intensity is applied during the twin-roll casting, the microstructural of strip becomes uniform ,refined and equiaxed at the central zone of strip, and the dendritic crystal at the surficial is disordered and refined significantly.


2019 ◽  
Vol 805 ◽  
pp. 43-49
Author(s):  
Toshio Haga

The casting of a 600 mm-wide 5182 aluminum alloy strip was attempted using a single-roll caster equipped with a scraper. This caster could cast a strip at speeds ranging from 10 to 40 m/min. These casting speeds are much higher than that of a conventional twin-roll caster. The scraper load suitable for scribing the wide strip was investigated. The strip could be scribed at full width by the scraper. The mechanical properties of the strip were investigated using a tension test and a cup test. The tensile stress was 320 MPa and the elongation was 30%. When deep drawing was conducted, no striped pattern, which occurs via segregation, appeared when both surfaces were facing outside.


2018 ◽  
Vol 382 ◽  
pp. 147-154
Author(s):  
Toshio Haga ◽  
Ryusuke Onishi ◽  
Hisaki Watari ◽  
Shinichi Nishida

Strip casting of Al-40%Sn-1%Cu, which is an aluminum alloy used for sliding bearings, was attempted using an unequal diameter twin roll caster. The conditions required to cast sound strips, including the roll speed, molten temperature, roll load, solidification length, melt head, and use of an upper plate, were investigated. The roll load required to make a stable strip surface was 0.01 kN/mm, and the porosity was minimum when the solidification time was less than 0.6 s. The solidification time was controlled by the roll speed and the solidification length. The casting temperature must be set below 670°C to properly solidify the molten metal, and the metal microstructure became finer as the melt head decreased.


2007 ◽  
Vol 192-193 ◽  
pp. 108-113 ◽  
Author(s):  
T. Haga ◽  
K. Takahashi ◽  
H. Watari ◽  
S. Kumai

2010 ◽  
Vol 154-155 ◽  
pp. 1544-1548 ◽  
Author(s):  
Kosuke Komeda ◽  
Ryoji Nakamura ◽  
Shinji Kumai

The disadvantages of the conventional twin-roll caster for aluminum alloy are low casting speeds and limited choices of alloys that are castable by this processing. It is known that strip casting of aluminum alloy 5182 is very difficult because of their wider freezing zones. The vertical-type high-speed twin-roll caster used in the present study was devised to overcome these disadvantages. Features of the high speed twin roll casters are as below. Mild steel rolls were used in order to increase the casting speed and to be made at a lower equipment cost. Roll coating is produced in casting of Al-Mg alloy. Therefore lubricant, that resists heat transfer, was not used in the present study. Heat transfer between melt and the roll was improved by hydrostatic pressure of the melt. Low superheat casting was carried out in order to improve microstructure of the strip. In the present study, effectiveness of a high-speed twin roll caster for recycling aluminum alloy was investigated. The effects of the high-speed twin roll caster on alleviating the deterioration of mechanical properties by impurities were investigated. Properties of the cast strip were investigated by metalography, a tension test, and a deep drawing test.


2005 ◽  
Vol 475-479 ◽  
pp. 343-348 ◽  
Author(s):  
Ryoji Nakamura ◽  
Hisaki Watari ◽  
Shinji Kumai

Two kinds of roll casters, which were suitable for high speed roll casting, were devised. One was a vertical type twin roll caster, and the other was an unequal diameter twin roll caster. The semisolid roll casting using a cooling slope was adopted to these roll casters. The solid fraction was smaller than 5%. 3 mm thickness of 6111 strip was cast at 60 m/min by the vertical type twin roll caster, and 5 mm thickness of 6111 strip was cast at 30 m/min by the unequal diameter twin roll caster. The microstructure of the as-cast strip was equiaxed and spherical, not columnar. The mechanical properties of the strip rolled from roll-cast strip were almost as same as that of the strip made from cast ingot.


Sign in / Sign up

Export Citation Format

Share Document