Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide

2001 ◽  
Vol 115 (3) ◽  
pp. 344-358 ◽  
Author(s):  
S.H. Lee ◽  
X.P. Li
2015 ◽  
Vol 656-657 ◽  
pp. 335-340 ◽  
Author(s):  
Fang Pin Chuang ◽  
Yan Cherng Lin ◽  
Hsin Min Lee ◽  
Han Ming Chow ◽  
A. Cheng Wang

The environment issue and green machining technique have been induced intensive attention in recent years. It is urgently need to develop a new kind dielectric to meet the requirements for industrial applications. The aim of this study is to develop a novel dielectric using gas media immersed in deionized water for electrical discharge machining (EDM). The developed machining medium for EDM can fulfill the environmentally friendly issue and satisfy the demand of high machining performance. The experiments were conducted by this developed medium to investigate the effects of machining parameters on machining characteristics in terms of material removal rate (MRR) and surface roughness. The developed EDM medium revealed the potential to obtain a stabilizing progress with excellent machining performance and environmentally friendly feature.


2009 ◽  
Vol 83-86 ◽  
pp. 756-763 ◽  
Author(s):  
P.S. Satsangi ◽  
K.D. Chattopadhyay

The use of thermo-electric source of energy, as in electrical discharge machining (EDM), has greatly helped in machining all types of electrically conductive materials being used in different industrial applications. The present work investigates the different machining characteristics during electrical discharge machining on EN-8 steel with a rotary copper electrode. The effects of three independent machining parameters viz. peak current, pulse on time and rotational speed of tool electrode are chosen as variables for evaluating the output parameters such as metal removal rate, surface finish of work piece. The research focuses on developing empirical models for prediction of metal removal rate and surface finish during rotary electrical discharge machining process with the help of input parameters. The models are developed using linear regression analysis by applying logarithmic data transformation of non-linear equation. Analysis of results using partial and multiple correlation analysis reveals that electrical parameters have more significant effect than the non-electrical parameters on the machining characteristics during electrical discharge machining by a rotary electrode. Furthermore, when high MRR is criterion, high peak current and low RPM with low pulse duration produces better output; whereas, and when smooth surface finish is criterion, low peak current and low RPM with high pulse duration produces better output. In addition, the predictions based on the above developed models are verified with extra experiments and are found to be in good agreement with the experimental verifications.


Author(s):  
M R Shabgard ◽  
M R Farahmand ◽  
A Ivanov

The phenomena occurring between the electrodes in electrical discharge machining (EDM) are still not fully understood. Poor quantitative knowledge of the sources of variability affecting this process hinders the identification of its natural tolerance limits. This paper presents a systematic methodology for developing statistical models to show the relationship between important machining performance data (material removal rate (MRR), tool wear ratio (TWR), and surface roughness Ra) and the input machining parameters (pulse current and pulse-on time) in the EDM and ultrasonic-assisted EDM (US/EDM) of tungsten carbide. The models obtained were used to analyse the effects of input parameters on machining performance. A comparative study was conducted to determine the influence of ultrasonic vibration of the tool on machining performance. The results show that the MRR is significantly increased in ultrasonic-assisted EDM of cemented tungsten carbide (WC—10%Co), especially in finishing modes, and can be up to four times greater than that of conventional EDM. The TWR and Ra values are also increased slightly in US/EDM. The mathematical models presented can be used for optimization of the machining parameters.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


Sign in / Sign up

Export Citation Format

Share Document