Low-temperature direct bonding of silicon and silicon dioxide by the surface activation method

1998 ◽  
Vol 70 (1-2) ◽  
pp. 164-170 ◽  
Author(s):  
Hideki Takagi ◽  
Ryutaro Maeda ◽  
Teak Ryong Chung ◽  
Tadatomo Suga
2019 ◽  
Author(s):  
Sina Chaeichian ◽  
Kaspar Schaerer ◽  
Ruairi O’Kane ◽  
Michael Halbasch

Author(s):  
Fengwen Mu ◽  
Masahisa Fujino ◽  
Tadatomo Suga ◽  
Kenichi Iguchi ◽  
Haruo Nakazawa ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1760 ◽  
Author(s):  
Pia Kutschmann ◽  
Thomas Lindner ◽  
Kristian Börner ◽  
Ulrich Reese ◽  
Thomas Lampke

Gas nitriding is known as a convenient process to improve the wear resistance of steel components. A precipitation-free hardening by low-temperature processes is established to retain the good corrosion resistance of stainless steel. In cases of thermal spray coatings, the interstitial solvation is achieved without an additional surface activation step. The open porosity permits the penetration of the donator media and leads to a structural diffusion. An inhomogeneous diffusion enrichment occurs at the single spray particle edges within the coating’s microstructure. A decreasing diffusion depth is found with increasing surface distance. The present study investigates an adjusted process management for low-temperature gas nitriding of high velocity oxy-fuel-sprayed AISI 316L coatings. To maintain a homogeneous diffusion depth within the coating, a pressure modulation during the process is studied. Additionally, the use of cracked gas as donator is examined. The process management is designed without an additional surface activation step. Regardless of surface distance, microstructural investigations reveal a homogeneous diffusion depth by a reduced processing time. The constant hardening depth allows a reliable prediction of the coatings’ properties. An enhanced hardness and improved wear resistance is found in comparison with the as-sprayed coating condition.


Sign in / Sign up

Export Citation Format

Share Document