scholarly journals Maternal Nanos regulates zygotic gene expression in germline progenitors of Drosophila melanogaster

1998 ◽  
Vol 78 (1-2) ◽  
pp. 153-158 ◽  
Author(s):  
Miho Asaoka ◽  
Hiroko Sano ◽  
Yoko Obara ◽  
Satoru Kobayashi
Genetics ◽  
1980 ◽  
Vol 96 (1) ◽  
pp. 187-200 ◽  
Author(s):  
Leonard G Robbins

ABSTRACT The possibility that essential loci in the zeste-white region of the Drosophila melanogaster X chromosome are expressed both maternally and zygotically has been tested. Maternal gene activity was varied by altering gene dose, and zygotic gene activity was manipulated by use of position-effect variegation of a duplication. Viability is affected when both maternal and zygotic gene activity are reduced, but not when either maternal or zygotic gene activity is normal. Tests of a set of overlapping deficiencies demonstrate that at least three sections of the zeste-white region yield maternal zygotic lethal interactions. Single-cistron mutations at two loci in one of these segments have been tested, and maternal heterozygosity for mutations at both loci give lethal responses of mutant-duplication zygotes. Thus, at least four of the 13 essential functions coded in the zeste-white region are active both maternally and zygotically, suggesting that a substantial fraction of the genome may function at both stages. The normal survival of zygotes when either maternal gene expression or zygotic gene expression is normal, and their inviability when both are depressed, suggests that a developmental stage exists when maternally determined functions and zygotically coded functions are both in use.


2013 ◽  
Vol 304 (3) ◽  
pp. R177-R188 ◽  
Author(s):  
Wendi S. Neckameyer ◽  
Kathryn J. Argue

Numerous studies have detailed the extensive conservation of developmental signaling pathways between the model system, Drosophila melanogaster, and mammalian models, but researchers have also profited from the unique and highly tractable genetic tools available in this system to address critical questions in physiology. In this review, we have described contributions that Drosophila researchers have made to mathematical dynamics of pattern formation, cardiac pathologies, the way in which pain circuits are integrated to elicit responses from sensation, as well as the ways in which gene expression can modulate diverse behaviors and shed light on human cognitive disorders. The broad and diverse array of contributions from Drosophila underscore its translational relevance to modeling human disease.


Nature ◽  
1989 ◽  
Vol 340 (6232) ◽  
pp. 363-367 ◽  
Author(s):  
Wolfgang Driever ◽  
Gudrun Thoma ◽  
Christiane Nüsslein-Volhard

Cell ◽  
1982 ◽  
Vol 28 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Elizabeth C. Raff ◽  
Margaret T. Fuller ◽  
Thomas C. Kaufman ◽  
Kenneth J. Kemphues ◽  
Jane E. Rudolph ◽  
...  

2015 ◽  
Vol 5 (12) ◽  
pp. 2843-2856 ◽  
Author(s):  
Florence Gutzwiller ◽  
Catarina R. Carmo ◽  
Danny E. Miller ◽  
Danny W. Rice ◽  
Irene L. G. Newton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document