The effect of ternary addition on the formation and the thermal stability of L12 Al3Zr alloy with nanocrystalline structure by mechanical alloying

2000 ◽  
Vol 312 (1-2) ◽  
pp. 273-283 ◽  
Author(s):  
Kyoung Il Moon ◽  
Keun Young Chang ◽  
Kyung Sub Lee
2010 ◽  
Vol 297-301 ◽  
pp. 1312-1321 ◽  
Author(s):  
Vladimir V. Popov ◽  
A.V. Stolbovkiy ◽  
E.N. Popova ◽  
V.P. Pilyugin

Evolution of structure of high-purity and commercially pure copper at severe plastic deformation (SPD) by high pressure torsion (HPT) at room temperature and in liquid nitrogen has been studied by transmission electron microscopy (TEM) and measurements of microhardness. Thermal stability of structure obtained by HPT has been investigated. Factors preventing from obtaining nanocrystalline structure in Cu are analyzed and possible ways of their overcoming are discussed.


2011 ◽  
Vol 176 (20) ◽  
pp. 1637-1643 ◽  
Author(s):  
Moni Kanchan Datta ◽  
Da-Tren Chou ◽  
Daeho Hong ◽  
Partha Saha ◽  
Sung Jae Chung ◽  
...  

2007 ◽  
Vol 534-536 ◽  
pp. 233-236 ◽  
Author(s):  
N.T.H. Oanh ◽  
Pyuck Pa Choi ◽  
Ji Soon Kim ◽  
Dae Hwan Kwon ◽  
Young Soon Kwon

Ti-Cu-Ni-Sn quaternary amorphous alloys of Ti50Cu32Ni15Sn3, Ti50Cu25Ni20Sn5, and Ti50Cu23Ni20Sn7 composition were prepared by mechanical alloying in a planetary high-energy ballmill (AGO-2). The amorphization of all three alloys was found to set in after milling at 300rpm speed for 2h. A complete amorphization was observed for Ti50Cu32Ni15Sn3 and Ti50Cu25Ni20Sn5 after 30h and 20h of milling, respectively. Differential scanning calorimetry analyses revealed that the thermal stability increased in the order of Ti50Cu32Ni15Sn3, Ti50Cu25Ni20Sn5, and Ti50Cu23Ni20Sn7.


2010 ◽  
Vol 356 (2) ◽  
pp. 120-123 ◽  
Author(s):  
D. Guzmán ◽  
S. Ordoñez ◽  
D. Serafini ◽  
P.A. Rojas ◽  
C. Aguilar ◽  
...  

2015 ◽  
Vol 60 (1) ◽  
pp. 511-516 ◽  
Author(s):  
E. Skołek ◽  
S. Marciniak ◽  
W.A. Świątnicki

AbstractThe aim of the study was to investigate the thermal stability of the nanostructure produced in X37CrMoV5-1 tool steel by austempering heat treatment consisted of austenitization and isothermal quenching at the range of the bainitic transformation. The nanostructure was composed of bainitic ferrite plates of nanometric thickness separated by thin layers of retained austenite. It was revealed, that the annealing at the temperature higher than temperature of austempering led to formation of cementite precipitations. At the initial stage of annealing cementite precipitations occurred in the interfaces between ferritic bainite and austenite. With increasing temperature of annealing, the volume fraction and size of cementite precipitations also increased. Simultaneously fine spherical Fe7C3carbides appeared. At the highest annealing temperature the large, spherical Fe7C3carbides as well as cementite precipitates inside the ferrite grains were observed. Moreover the volume fraction of bainitic ferrite and of freshly formed martensite increased in steel as a result of retained austenite transformation during cooling down to room temperature.


Sign in / Sign up

Export Citation Format

Share Document