Seasonal and spatial patterns in mass and organic matter sedimentation in the North Water

2002 ◽  
Vol 49 (22-23) ◽  
pp. 5227-5244 ◽  
Author(s):  
B.T Hargrave ◽  
I.D Walsh ◽  
D.W Murray
2013 ◽  
Vol 341 ◽  
pp. 1-13 ◽  
Author(s):  
Joscelyn N.-L. Bailey ◽  
Robie W. Macdonald ◽  
Hamed Sanei ◽  
Peter M. Outridge ◽  
Sophia C. Johannessen ◽  
...  

2002 ◽  
Vol 49 (22-23) ◽  
pp. 4947-4958 ◽  
Author(s):  
Tsuneo Odate ◽  
Toru Hirawake ◽  
Sakae Kudoh ◽  
Bert Klein ◽  
Bernard LeBlanc ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rebecca Jackson ◽  
Anna Bang Kvorning ◽  
Audrey Limoges ◽  
Eleanor Georgiadis ◽  
Steffen M. Olsen ◽  
...  

AbstractBaffin Bay hosts the largest and most productive of the Arctic polynyas: the North Water (NOW). Despite its significance and active role in water mass formation, the history of the NOW beyond the observational era remains poorly known. We reconcile the previously unassessed relationship between long-term NOW dynamics and ocean conditions by applying a multiproxy approach to two marine sediment cores from the region that, together, span the Holocene. Declining influence of Atlantic Water in the NOW is coeval with regional records that indicate the inception of a strong and recurrent polynya from ~ 4400 yrs BP, in line with Neoglacial cooling. During warmer Holocene intervals such as the Roman Warm Period, a weaker NOW is evident, and its reduced capacity to influence bottom ocean conditions facilitated northward penetration of Atlantic Water. Future warming in the Arctic may have negative consequences for this vital biological oasis, with the potential knock-on effect of warm water penetration further north and intensified melt of the marine-terminating glaciers that flank the coast of northwest Greenland.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sofia Ribeiro ◽  
Audrey Limoges ◽  
Guillaume Massé ◽  
Kasper L. Johansen ◽  
William Colgan ◽  
...  

AbstractHigh Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the world’s northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-to-late Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores. Our results suggest a productive ecosystem by 4400–4200 cal yrs b2k coincident with the arrival of the first humans in Greenland. Climate forcing during the late Holocene, leading to periods of polynya instability and marine productivity decline, is strikingly coeval with the human abandonment of Greenland from c. 2200–1200 cal yrs b2k. Our long-term perspective highlights the future decline of the North Water ecosystem, due to climate warming and changing sea-ice conditions, as an important climate change risk.


1977 ◽  
Vol 19 (81) ◽  
pp. 547-554 ◽  
Author(s):  
Hajime Ito ◽  
Fritz Müller

AbstractThe understanding of the horizontal movement of fast ice is important for applied sea-ice mechanics. A case study, carried out in conjunction with a polynya known as North Water, is presented in this paper. The displacements of the fast-ire arches which separate the polynya from the surrounding ice-covered sea, were measured and found to be small. It is, therefore, confirmed that these arches prevent the influx of large quantities of sea ice into the polynya. The results are then explained in terms of the external forces (wind and current), the stress- strain situations and some physical characteristics (temperature and thickness) which were measured simultaneously.


Sign in / Sign up

Export Citation Format

Share Document