High risk of cervical cancer with HIV

2000 ◽  
Vol 8 (16) ◽  
pp. 162-163
Keyword(s):  
2017 ◽  
pp. 99-103
Author(s):  
Van Bao Thang Phan ◽  
Hoang Bach Nguyen ◽  
Van Thanh Nguyen ◽  
Thi Nhu Hoa Tran ◽  
Viet Quynh Tram Ngo

Introduction: Infection with HPV is the main cause of cervical cancer. Determining HPV infection and the types of HPV plays an important role in diagnosis, treatment and prognosis of cervicitis/cervical cancer. Aims: Determining proportion of high-risk HPV types and the occurrence of coinfection with multiple HPV types. Methods: 177 women with cervicitis or abnormal Pap smear result were enrolled in the study. Performing the real-time PCR for detecting HPV and the reverse DOT-BLOT assay for determining type of HPV in cases of positive PCR. Results: 7 types of high-risk HPV was dectected, the majority of these types were HPV type 18 (74.6%) and HPV type 16 (37.6%); the proportion of infection with only one type of HPV was 30.4% and coinfection with multiple HPV types was higher (69.6%), the coinfected cases with 2 and 3 types were dominated (32.2% and 20.3%, respectively) and the coinfected cases with 4 and 5 types were rare. Conclusion: Use of the real-time PCR and reverse DOT-BLOT assay can determine the high-risk HPV types and the occurrence of coinfection with multiple HPV types. Key words: HPV type, Reverse DOT-BLOT, real-time PCR,PCR, cervical cancer


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 714
Author(s):  
Matthias Läsche ◽  
Horst Urban ◽  
Julia Gallwas ◽  
Carsten Gründker

Cervical cancer is responsible for around 5% of all human cancers worldwide. It develops almost exclusively from an unsolved, persistent infection of the squamocolumnar transformation zone between the endo- and ecto-cervix with various high-risk (HR) human papillomaviruses (HPVs). The decisive turning point on the way to persistent HPV infection and malignant transformation is an immune system weakened by pathobionts and oxidative stress and an injury to the cervical mucosa, often caused by sexual activities. Through these injury and healing processes, HPV viruses, hijacking activated keratinocytes, move into the basal layers of the cervical epithelium and then continue their development towards the distal prickle cell layer (Stratum spinosum). The microbial microenvironment of the cervical tissue determines the tissue homeostasis and the integrity of the protective mucous layer through the maintenance of a healthy immune and metabolic signalling. Pathological microorganisms and the resulting dysbiosis disturb this signalling. Thus, pathological inflammatory reactions occur, which manifest the HPV infection. About 90% of all women contract an HPV infection in the course of their lives. In about 10% of cases, the virus persists and cervical intra-epithelial neoplasia (CIN) develops. Approximately 1% of women with a high-risk HPV infection incur a cervical carcinoma after 10 to 20 years. In this non-systematic review article, we summarise how the sexually and microbial mediated pathogenesis of the cervix proceeds through aberrant immune and metabolism signalling via CIN to cervical carcinoma. We show how both the virus and the cancer benefit from the same changes in the immune and metabolic environment.


Author(s):  
Chun Gao ◽  
Ping Wu ◽  
Lan Yu ◽  
Liting Liu ◽  
Hong Liu ◽  
...  

AbstractIntegration of high-risk HPV genomes into cellular chromatin has been confirmed to promote cervical carcinogenesis, with HPV16 being the most prevalent high-risk type. Herein, we evaluated the therapeutic effect of the CRISPR/Cas9 system in cervical carcinogenesis, especially for cervical precancerous lesions. In cervical cancer/pre-cancer cell lines, we transfected the HPV16 E7 targeted CRISPR/Cas9, TALEN, ZFN plasmids, respectively. Compared to previous established ZFN and TALEN systems, CRISPR/Cas9 has shown comparable efficiency and specificity in inhibiting cell growth and colony formation and inducing apoptosis in cervical cancer/pre-cancer cell lines, which seemed to be more pronounced in the S12 cell line derived from the low-grade cervical lesion. Furthermore, in xenograft formation assays, CRISPR/Cas9 inhibited tumor formation of the S12 cell line in vivo and affected the corresponding protein expression. In the K14-HPV16 transgenic mice model of HPV-driven spontaneous cervical carcinogenesis, cervical application of CRISPR/Cas9 treatment caused mutations of the E7 gene and restored the expression of RB, E2F1, and CDK2, thereby reversing the cervical carcinogenesis phenotype. In this study, we have demonstrated that CRISPR/Cas9 targeting HPV16 E7 could effectively revert the HPV-related cervical carcinogenesis in vitro, as well as in K14-HPV16 transgenic mice, which has shown great potential in clinical treatment for cervical precancerous lesions.


ESMO Open ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 100154
Author(s):  
L. Cabel ◽  
C. Bonneau ◽  
A. Bernard-Tessier ◽  
D. Héquet ◽  
C. Tran-Perennou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document