scholarly journals 89Zr-photoradiosynthesis of a dual-modality PET-optical tracer using light-induced antibody conjugation chemistry

2021 ◽  
Vol 96-97 ◽  
pp. S21-S22
Author(s):  
Amaury Guillou ◽  
Jason Holland
Author(s):  
Karinna Chouman ◽  
Mira Woitok ◽  
Radoslav Mladenov ◽  
Claudia Kessler ◽  
Elmar Weinhold ◽  
...  

2013 ◽  
Vol 64 (5) ◽  
Author(s):  
Muhammad Jaysuman Pusppanathan ◽  
Fazlul Rahman Yunus ◽  
Nor Muzakkir Nor Ayob ◽  
Ruzairi Abdul Rahim ◽  
Fatin Aliah Phang ◽  
...  

Electrical capacitance tomography (ECT) is one of process tomography technique which is developed rapidly in recent years. ECT is an imaging technique to obtain the internal permittivity distribution of a vessel or pipe by using capacitance electrodes sensor. This method has been integrated with ultrasonic tomography as multimodality system to perform multiphase flow measurement such as crude oil separation and oil process industry. In the present paper, a novel type of ECT sensor was developed using copper FR4 material. The electrode sensors can be flexibly bend or curve to fit the pipe surface for optimum measurement. Thus, every single sensor strip is designed to be functioned independently. Such system has lower sensing capability in the central of the sensing area which often contributes to poor imaging result. This problem can be overcome by combining the ECT with ultrasonic tomography to form a dual modality tomography system. By implementing the new ECT sensor, multiphase flow measurement image results can be achieved. The reconstructed image results are presented in this paper.


2016 ◽  
Vol 8 (7) ◽  
pp. 4378-4384 ◽  
Author(s):  
Dawei Jiang ◽  
Yanhong Sun ◽  
Jiang Li ◽  
Qian Li ◽  
Min Lv ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Shamsul Bin Sulaiman ◽  
Shiplu Roy Chowdhury ◽  
Mohd Fauzi Bin Mh Busra ◽  
Rizal Bin Abdul Rani ◽  
Nor Hamdan Bin Mohamad Yahaya ◽  
...  

The tissue engineering approach in osteoarthritic cell therapy often requires the delivery of a substantially high cell number due to the low engraftment efficiency as a result of low affinity binding of implanted cells to the targeted tissue. A modification towards the cell membrane that provides specific epitope for antibody binding to a target tissue may be a plausible solution to increase engraftment. In this study, we intercalated palmitated protein G (PPG) with mesenchymal stem cells (MSCs) and antibody, and evaluated their effects on the properties of MSCs either in monolayer state or in a 3D culture state (gelatin microsphere, GM). Bone marrow MSCs were intercalated with PPG (PPG-MSCs), followed by coating with type II collagen antibody (PPG-MSC-Ab). The effect of PPG and antibody conjugation on the MSC proliferation and multilineage differentiation capabilities both in monolayer and GM cultures was evaluated. PPG did not affect MSC proliferation and differentiation either in monolayer or 3D culture. The PPG-MSCs were successfully conjugated with the type II collagen antibody. Both PPG-MSCs with and without antibody conjugation did not alter MSC proliferation, stemness, and the collagen, aggrecan, and sGAG expression profiles. Assessment of the osteochondral defect explant revealed that the PPG-MSC-Ab micromass was able to attach within 48 h onto the osteochondral surface. Antibody-conjugated MSCs in GM culture is a potential method for targeted delivery of MSCs in future therapy of cartilage defects and osteoarthritis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria-Argyro Karageorgou ◽  
Dimosthenis Stamopoulos

AbstractRadiolabeled magnetic nanoparticles are promising candidates as dual-modality-contrast-agents (DMCA) for diagnostic applications. The immunocompatibility of a new DMCA is a prerequisite for subsequent in vivo applications. Here, a new DMCA, namely Fe3O4 nanoparticles radiolabeled with 68Ga, is subjected to immunocompatibility tests both in vitro and in vivo. The in vitro immunocompatibility of the DMCA relied on incubation with donated human WBCs and PLTs (five healthy individuals). Optical microscopy (OM) and atomic force microscopy (AFM) were employed for the investigation of the morphological characteristics of WBCs and PLTs. A standard hematology analyzer (HA) provided information on complete blood count. The in vivo immunocompatibility of the DMCA was assessed through its biodistribution among the basic organs of the mononuclear phagocyte system in normal and immunodeficient mice (nine in each group). In addition, Magnetic Resonance Imaging (MRI) data were acquired in normal mice (three). The combined OM, AFM and HA in vitro data showed that although the DMCA promoted noticeable activation of WBCs and PLTs, neither degradation nor clustering were observed. The in vivo data showed no difference of the DMCA biodistribution between the normal and immunodeficient mice, while the MRI data prove the efficacy of the particular DMCA when compared to the non-radiolabeled, parent CA. The combined in vitro and in vivo data prove that the particular DMCA is a promising candidate for future in vivo applications.


Sign in / Sign up

Export Citation Format

Share Document