Modeling texture evolution during rolling process of AZ31 magnesium alloy with elasto-plastic self consistent model

2011 ◽  
Vol 21 (6) ◽  
pp. 1348-1354 ◽  
Author(s):  
Shi-yao HUANG ◽  
Shao-rui ZHANG ◽  
Da-yong LI ◽  
Ying-hong PENG
Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 41 ◽  
Author(s):  
Yong Lian ◽  
Li Hu ◽  
Tao Zhou ◽  
Mingbo Yang ◽  
Jin Zhang

Uniaxial tension and compression of AZ31 magnesium alloy were numerically investigated via the viscoplastic self-consistent (VPSC) model to shed a light on the effect of secondary deformation mechanisms (prismatic <a> slip, pyramidal <c+a> slip, and { 10 1 ¯ 1 } contraction twinning) during plastic deformation. The method adopted in the present study used different combinations of deformation mechanisms in the VPSC modeling. In terms of the pyramidal <c+a> slip, it served as the first candidate for sustaining the extra plastic strain during the plastic deformation. The improvement of activity in the pyramidal <c+a> slip contributed to the increase in the mechanical response and the splitting of pole densities in { 0002 } pole figure during uniaxial tension. As for the prismatic <a> slip, its increasing activity was not only conducive to the improvement of flow stress in mechanical response, but also responsible for the splitting of pole densities in { 0002 } pole figure during uniaxial compression. With respect to the { 10 1 ¯ 1 } contraction twinning, it had a negligible influence on the plastic deformation of AZ31 magnesium alloy in terms of the mechanical response as well as the slip and the twinning activities. However, it is better to include the { 10 1 ¯ 1 } contraction twinning in the VPSC modeling to more accurately predict the texture evolution.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Su Hui ◽  
Zhibing Chu ◽  
Huanzhu Wang ◽  
Yugui Li ◽  
Lifeng Ma ◽  
...  

The viscoplastic self-consistent (VPSC) model is used to establish a combination of different deformation mechanisms. By using this model, axial tension and compression tests of extruded AZ31 magnesium alloy at room temperature are simulated. The influence of secondary deformation mechanism (prismatic <a> slip, pyramidal <c + a> slip, and 101¯1 compression twin) on mechanical response and texture evolution is expounded. Increased activity of the prismatic <a> slip is conducive for the improvement of flow stress in mechanical response during axial tension and for the splitting of pole densities in the {0002} pole figure during axial compression. However, increased activity of the pyramidal <c + a> slip causes the basal texture to transfer to the extrusion direction in the {0002} pole figure during axial compression. The 101¯1 compression twinning has a negligible influence on the plastic deformation and mechanical response of AZ31 magnesium alloy during axial tension and compression. However, the 101¯1 compression twinning should be included in VPSC modeling to predict the texture evolution accurately.


2006 ◽  
Vol 54 (2) ◽  
pp. 549-562 ◽  
Author(s):  
S.-B. Yi ◽  
C.H.J. Davies ◽  
H.-G. Brokmeier ◽  
R.E. Bolmaro ◽  
K.U. Kainer ◽  
...  

2016 ◽  
Vol 716 ◽  
pp. 864-870
Author(s):  
Andrzej Stefanik ◽  
Piotr Szota ◽  
Sebastian Mróz ◽  
Teresa Bajor ◽  
Sonia Boczkal

This paper presents the research results of the microstructure changes of the round rods of AZ31 magnesium alloy in the hot rolling processes. The rolling was conducted in duo mill and a three-high skew rolling mill. Numerical modelling of the AZ31 magnesium alloy round rods rolling process was conducted using a computer program Forge 2011®. The verification of the results of numerical modelling was carried out during laboratory tests in a two-high rolling mill D150 and a three-high skew rolling mill RSP 40/14. Distributions of the total effective strain and temperature during AZ31 rods rolling process were determined on the basis of the theoretical analysis. Microstructure and texture changes during both analysed processes were studied.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Zhiquan Huang ◽  
Jinchao Zou ◽  
Junpeng Wang ◽  
Yanjie Pei ◽  
Renyao Huang ◽  
...  

The present study aims to investigate the effect of a prefabricated-crown rolling process on the corrosion characteristic of the AZ31 magnesium alloy. Specimens made of the AZ31 alloy were rolled under various crown conditions, and their microstructure evolution and corrosion behavior were analyzed. The corrosion behavior was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the corrosion-current density of the AZ31 alloy with a side pressure of 37.5 % of the plate thickness of the precast convexity decreased from 3.79 × 10–6 A/cm2 to 1.80 × 10–6 A/cm2, and the difference between the edge and the middle of the AZ31 alloy was shortened from 2.05 × 10–6 A/cm2 to 1.14 × 10–6 A/cm2. The charge-transfer resistance also increased from 507.1 Ω·cm2 to 581.2 Ω·cm2. The improvement in the corrosion resistance is a result of the more stable corrosion products and microstructure refinement formed after the prefabricated-crown rolling process.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Ming Chen ◽  
Xiaodong Hu ◽  
Hongyang Zhao ◽  
Dongying Ju

A large reduction rolling process was used to obtain complete dynamic recrystallization (DRX) microstructures with fine recrystallization grains. Based on the hyperbolic sinusoidal equation that included an Arrhenius term, a constitutive model of flow stress was established for the unidirectional solidification sheet of AZ31 magnesium alloy. Furthermore, discretized by the cellular automata (CA) method, a real-time nucleation equation coupled flow stress was developed for the numerical simulation of the microstructural evolution during DRX. The stress and strain results of finite element analysis were inducted to CA simulation to bridge the macroscopic rolling process analysis with the microscopic DRX activities. Considering that the nucleation of recrystallization may occur at the grain and R-grain boundary, the DRX processes under different deformation conditions were simulated. The evolution of microstructure, percentages of DRX, and sizes of recrystallization grains were discussed in detail. Results of DRX simulation were compared with those from electron backscatter diffraction analysis, and the simulated microstructure was in good agreement with the actual pattern obtained using experiment analysis. The simulation technique provides a flexible way for predicting the morphological variations of DRX microstructure accompanied with plastic deformation on a hot-rolled sheet.


Sign in / Sign up

Export Citation Format

Share Document